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ABSTRACT 
 

Landslide is one of the most destructive natural calamities that 
poses great threat to both human lives and properties especially 
in developing countries like the Philippines. Due to these 
reasons, many techniques such as Landslide Susceptibility 
Mapping (LSM) have been developed to reduce the adverse 
impacts of such phenomenon. This study was conducted to 
develop a landslide susceptibility map of the Pagsanjan–
Lumban Watershed by integrating the Analytical Hierarchy 
Process (AHP) and Geographic Information System (GIS).  
 
The study considered seven factors (elevation, slope, rainfall, 
soil texture, land cover, fault lines and roads) in generating the 
susceptibility map.  Results from AHP showed that experts from 
various fields have different perspectives on the level of 
importance of factors that resulted to the variability in 
judgments. Among the different factors, slope (23.18%) and 
rainfall (21.50%) had the highest relative weights while road 
(8.70%) and elevation (6.61%) had the lowest relative weights. 
Based on the weighted overlay analysis, the Landslide 
Susceptibility Index (LSI) of the watershed was observed 
between 1.43 and 3.65. About 13.82% (6,280 ha) of the area had 
classification of high susceptibility while 5.51% (2,502 ha) fell 
under the very high susceptibility level.  Furthermore, Lucban 
(2,648.57 ha) and Lumban (1,956.96 ha) were found to have the 
largest areas with high to very high susceptibility while Mauban 
(1.20 ha), Liliw (1.20), Sampaloc (13.49 ha) and Magdalena 
(28.90 ha) generated low susceptibility levels. The findings of 
the study can contribute in the effective management of the 
Pagsanjan–Lumban Watershed. 
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INTRODUCTION 
 
The Philippine archipelago has a total land area of 
approximately 30 million ha with almost 75% considered as 
watersheds (Saplaco et al. 2001). A watershed is a 
“topographically delineated area where rainwater is drained as 
surface run–off via a specific stream or river system to a 
common outlet which may be a dam, an irrigation system or a 
municipal water supply take off point, or where the stream/river 
discharges water into a larger water body” (ERDB 2011).  
 
Philippine watersheds are naturally prone to environmental 
disasters due to the presence of several active faults, steep 
slopes, rugged topography and poor vegetation cover  (ERDB 
2011). These are further exacerbated by anthropogenic activities 
such as logging, kaingin, charcoal making and the like. Among 
the problems besetting the country, landslide is one of the most 
catastrophic environmental disasters in upland areas. Landslide 
is a phenomenon usually triggered by earthquake or rainfall, and 
can cause significant damage not only to the watershed 
continuum but also to life and properties. For these reasons, 
various scholars and experts have formulated several techniques 
to identify risk areas and develop strategies for these areas to 
reduce or even prevent adverse effects of landslides. One of 
these techniques is landslide susceptibility mapping. Nowadays, 
with the advent of the state–of–the art technologies such as 
remote sensing and geographic information system (GIS), 
landslide hazard mapping has become a very effective way in 
management planning. These technologies are being used by 
experts worldwide to develop landslide maps, hazard maps, risk 
maps, susceptibility maps and vulnerability maps. In many 
studies, the selection of factors and weights provided for each 
criterion are based solely from one field of expertise. This study 
therefore aimed to capture the development of a landslide 
susceptibility model that incorporates various fields of expertise. 
One of the approaches that can accommodate such kind of 
analysis is the Analytical Hierarchy Process (AHP).  

AHP is a well–known semi–quantitative method developed by 
Thomas L. Saaty in 1971 (Saaty 1987). Saaty (1980) created this 
tool to refrain from making simplified assumptions not only to 
suit quantitative models but to reflect the complex situations. To 
be realistic, Saaty says that the model must include and measure 
all tangible and intangible, qualitative and quantitative factors. 
The use of pair–wise comparison judgment in AHP as inputs 
allows one to cope with factors which, in the main stream of 
application, have not been effectively quantified. This then gives 
values to each factor depending on the level of its influence. 
 
Over the years, AHP was used by many experts from simple 
decision making as choosing the computer model to buy to 
complicated decisions as redesigning the Higher Education in 
Malaysia (Yusof & Salleh 2013). 
 
AHP has become a very useful tool in the fields of 
environmental science and management particularly in planning, 
decision making, and hazard mapping. Many landslide 
susceptibility studies have been conducted using this tool 
(Mezughi et al. 2012; Moradi et al. 2012; Phukon et al. 2012, 
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MATERIALS AND METHODS 
 
Factors for Landslide Susceptibility 
 
The stability of slopes is dependent on numerous factors 
including the biophysical characteristics of the area and 
anthropogenic influences. In this study, only seven 
biophysical factors were considered namely, elevation, 
slope, rainfall, soil type, land cover, proximity to roads, 
and proximity to fault lines (Figures 2a to 2g). The 
number of parameters used in this modelling is in 
accordance with the results of Ozdemir (2005) who 
limited the number of elements used in pair–wise 
comparison to about seven to have a consistent and 
valid result in AHP. 
 
All thematic maps were converted into raster with a 
30m x 30m cell size resolution using appropriate tools 
in ArcGISTM. A scale of 1 to 5 was utilized to indicate 
the levels of susceptibility for each factor, 1 being the 
least susceptible and 5 being the most susceptible. Each 
thematic map was then reclassified and divided into five 
classes to conform to the developed scales.  
 
The elevations were categorized using a 500–m interval 
while the slope was reclassified into five classes and 
these are 0–8% (flat), 8–18% (rolling), 18–30% 
(moderate), 30–50% (steep), and >50% (very steep). 
Rainfall was categorized into five classes with 1000 mm 
interval. The soil map of the area was grouped 
depending on soil textural classes. The land cover map 
was classified into closed forest, open forest/plantation, 
shrub lands/natural grasslands, cultivated/built–up areas, 
and barren lands. For fault lines and road networks, the 
proximity analysis function was used. A buffer of 100–
m interval was applied for the road network to generate 
the classes while a 500–m interval distance was used for 
fault lines and collapsed structures.  
 
Analytical Hierarchy Process 
 
AHP is a semi–quantitative approach which involves 
pair–wise comparison of identified factors to a 
particular phenomenon or event. In this case, it is 
employed in modelling landslide susceptibility of a 
watershed. In the model, AHP assigns values to the 
different factors based on their level of influence to 
landslide occurrence. This assigning of values is usually 
done by various experts.  
 
AHP also utilizes a pair–wise comparison matrix that 
involves comparison of an individual factor to the other 
factors. This was designed to remove biases in decision– 
making. Factors in this matrix are being compared based 
on their relative importance or influence to landslide. As 
an input value in this matrix, the Saaty Rating Scale 
(Table 1) was used as a guide in comparing the different 
factors. This means that factors given higher value have 
higher level of importance or influence to the 
occurrence of landslide.  
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Mondal & Maiti 2012; Feizizadeh & Blashcke 2013; Pourghasemi, 
Moradi 2013). AHP was also applied with other methods such as fuzzy 
logic to further increase the accuracy of the results (Gorsevski et al. 
2006).  
 
Some experts have also tried comparing AHP with other popular 
techniques in decision making such as multiple regression approach in 
landslide hazard zonation of Langan Watershed in Ardabil, Iran (Ouri & 
Amirian, n.d.). Likewise, Yalcin et al. (2011) compared AHP with 
bivariate and logistics regression methods in landslide susceptibility 
mapping in Trabzon, NE Turkey. Marjanovic et al. (2009) compared 
AHP with machine learning algorithms used in landslide susceptibility 
assessment in Serbia. 
 
In the Philippines, AHP technique is still seldom used as an approach in 
developing landslide susceptibility models. This study aims to bridge 
that gap by generating a landslide susceptibility model of the Pagsanjan–
Lumban Watershed using AHP and GIS. 
 
 
Study Area 
 
The Pagsanjan–Lumban Watershed is located in the Southern Tagalog 
Region, mainly at the southeastern part of Laguna de Bay with 
geographic coordinates of 14°37’ to 14°21’ north latitude and 121°24’ to 
121°37’ east longitude (Figure 1). It is bounded by the Laguna Lake in 
the north; Paete, Pakil and Pangil watersheds in the east; Sta. Cruz 
watershed in the west; and Mt. Banahaw in the south. The watershed has 
a total land area of 45,444 ha covering a total of 13 municipalities 
namely Cavinti, Kalayaan, Liliw, Luisiana, Lumban, Magdalena, 
Majayjay, Mauban, Paete, and Pagsanjan in the province of Laguna, and 
Lucban, Sampaloc, and Tayabas in the province of Quezon. 
 
The topography of the area is relatively flat to rolling from the shore 
going up to the mountains. The elevation ranges from 20 to 2,080 
meters above sea level (masl) and the highest point of the mountain is 
located in Mt. Banahaw de Tayabas.  
 

Figure 1. Location map of the study area. 



 Figure 2.  Biophysical factors of Pagsanjan-Lumban Watershed. 

(a) 
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(b) 

(c) (d) 



 Figure 2.  Biophysical factors of Pagsanjan-Lumban Watershed. (Cont.) 
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(e) (f) 

(g) 

 



In this study, the pair–wise comparison matrix was 
accomplished through experts’ interview. Six experts were 
interviewed for this study. However, only four of them were 
finally selected since the matrix of the other two exceeded the 
maximum consistency ratio value of 0.1. The four remaining 
experts interviewed for this study include two geologists, a 
forester and an environmental scientist. These experts were 
purposely selected based on their knowledge and experience in 
the field of hazard mapping specifically on landslides. It is 
important to interview experts from different fields to acquire a 
variety of perceptions as well. Upon completion of the matrix, 
the data were then processed and the important parameters such 
as Eigenvectors and Consistency Ratio were computed. 
Eigenvector, as defined by Saaty (1980), corresponds to the 
relative weight, importance or value of the factors whereas 
Consistency Ratio measures the consistency of the judgments 
done.  
 
The matrix in AHP is in the form: m x m matrix, where m is the 
number of factors considered. Each value, ajk in the matrix 
represents the importance of the jth criterion relative to kth 

criterion, where j is the factor in rows and k is factor in columns. 
The first step in the manual computation of Eigenvector (E) and 
Consistency Ratio (CR) is the calculation of the nth root (X) of 
the product values by multiplying together the entries in each 
row of the matrix   (Equation 1). 
 
Equation 1: 
 
 
 
 
 

Intensity of 
Importance 

Definition  Explanation 

1 
Equal 
importance 

Two factors contribute 
equally to the objective 

3 
Somewhat 
more 
important 

Experience and judgment 
slightly favor one over the 
other 

5 
Much more 
important 

Experience and judgment 
strongly favor one over the 
other 

7 
Very much 
more 
important 

Experience and judgment 
very strongly favor one over 
the other. Its importance is 
demonstrated in practice. 

9 
Absolutely 
more 
important 

The evidence favoring one 
over the other is of the 
highest possible validity. 

2,4,6,8 
Intermediate 

values 
When compromise is 
needed 

Table 1. The Saaty rating scale adapted from Saaty 
 (1980). 

where:  X = nth root of the product value 
 A = factor A 
 ajk = values in the row of the factor A 
 
To normalize the eigenvector of elements, the sum of the X of 
A: X of n was computed and then used as the divisor for all the 
X computed. The result here is the eigenvector factor for each 
row. The higher the eigenvector value means higher relative 
importance or value. 
  
In order to compute the Consistenty Index (CI), the maximum 
vector (λmax) must be computed first using Equation 2 with the 
assumption that vector Aω = λω (ω is the eigenvector of order n 
and λ is the eigenvalue). 
 
Equation 2: 
 
 
 
 
The equation only says that the value entry ajk is multiplied to 
the eigenvector of the Factor A and so on and so forth. For 
Factor B and the remaining factors, there is a difference such 
that the first entry value jk for all remaining factors was 
multiplied to the eigenvector of Factor A and the rest was the 
same, such that bjk1 was multiplied to eigenvector of Factor A 
and cjk1 was multiplied to E of A. According to the AHP theory, 
Aω = λmaxω. This means that to get the estimate of λmax, 
divide each component of λω by the corresponding 
eeigenvector. Then the mean of these values is computed to 
derive the estimate of λmaxω. Estimate of λmaxω should not be 
less than n, otherwise there is an error in the computation. The 
next step would be the computation of Consistency Index 
(Equation 3). 
 
Equation 3: 
 
 
 
The final step is the computation of CR which will determine 
the consistency of the judgment done by the experts. CR > 0.1 
would usually be rejected because this means that there are 
some inconsistencies in judgments. However, in some cases, 
judgments with CR > 0.1 are accepted – this means that the 
judgment has slight inconsistencies – for as long as it does not 
reach CR > 0.9. It means that the judgment has reached 
randomness. The CR was computed by dividing the CI 
computed by the value of Random Index (RI) in the table of 
inconsistency for random judgments (Equation 4).  
 
Equation 4: 
 
 
 
 
In the study, the eigenvector and CR were computed using an 
excel template developed by Goepel (2013) instead of manual 
computation that may cause some errors (Figure 3). In the 
template, weight of factors in column A was compared to the 
factors in column B by selecting which factor has more weight 
over the other; then input the relation of the weights being 
compared to the Saaty Rating Scale (1–9) column (refer to Table 
1). 
 

) 
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Figure 3. Sample of an AHP Template. 
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next to drainage factor. Ayalew & Yamagishi’s (2005) study in 
Central Japan found that slope gradient and slope aspect have 
more significant contribution in landslide occurrence than 
elevation.  
 
The lowest relative weight was given to elevation. This means 
that this factor has the least influence to landslide occurrence. 
However, this should still be considered as important as the 
other factors especially in AHP because it uses a pair–wise 
comparison matrix that does not treat factors independently but 
as related to each other.  
 
For other factors, experts gave different scores wherein some 
favored soil texture over land cover and distance to road over 
distance to fault line. The differences in scores of the four other 
factors – soil texture, land cover, distance to road, and distance 
to fault line – explains why their scores were close to each other. 
All the experts gave different rankings for other factors except 
for rainfall and slope which may be influenced by their 
experiences and training in their own field of discipline.  
 
Landslide Susceptibility Map  
 
The results from the computation of CR were then applied in 
generating the LSI of the watershed using GIS. Since AHP does 
not have a standard scale for classification, the study employed 
the Natural Breaks (Jenks) classification scheme. According to 
experts, this classification depends on natural jumps or big 
changes in values. Ayalew et al. (2004) applied this 
classification scheme in their landslide study in Agano River, 
Japan. They asserted that this classification scheme divides 
values that best maximize the difference between classes.  
 
The results of the processed pair–wise comparison matrix and 
the computed eigenvector generated a range of LSI values from 
1.43 to 3.65. These values were then divided into five 
categories, as summarized in Table 3, representing various 
susceptibility levels to landslide. 
 
After generating the landslide susceptibility map (Figure 4) of 
the entire watershed, the area in each susceptibility class per 
municipality was also determined through intersect analysis 
(Table 4). The municipalities of Lucban (2,648.57 ha or 
40.55%) and Lumban (1,959.96 ha or 23.21%) were revealed to 
have the largest areas with high and very high susceptibility to 
landslide. On the other hand, the municipalities of Cavinti 
(5,697.60 ha or 72.61%) and Majayjay (4,592.09 ha or 67.86%) 
were observed to have the largest areas in terms of low and very 
low susceptibility levels. 

Landslide Susceptibility Mapping Using GIS 
  
This study employed AHP to develop a landslide susceptibility 
map of the Pagsanjan–Lumban Watershed. Seven biophysical 
factors were considered, namely elevation, slope, rainfall, soil 
texture, land cover, distance to roads, and distance to fault lines. 
These factors were given relative weights through the use of 
AHP. The relative weights are based on expert judgment to 
determine the levels of influence of each factor through the 
computation of its eigenvector. This then corresponds to the 
relative weight of influence of each factor and finally applied in 
the computation of the landslide susceptibility index (LSI). Each 
factor in the process was translated into a map and a weighted 
overlay process was applied using GIS to generate the LSI of the 
entire watershed. The LSI of each pixel was computed by taking 
the summation of the product of the class weights (R) and 
factors weights (W) as shown in Equation 5. 
 
Equation 5:  

 
 
 
 
 

After the LSI was computed, the range was divided into five 
classes using the Natural Breaks (Jenks) classification method. 
This classification technique was used since it relies on inherent 
data and set boundaries based on big jumps in data values 
(Ayalew et al. 2004). 
 
 
RESULTS AND DISCUSSION 
 
Eigenvector and Consistency Ratio 
 
In order to achieve reasonable and acceptable results, it is 
necessary to check for the consistency of the eigenvectors 
provided by the experts consulted. The computed consistency 
ratio of the consolidated experts’ judgments is 0.023, lower than 
the threshold set by Saaty. According to Saaty (1980), a 
consistent judgment should not exceed a CR of 0.1. However, 
although the CR is acceptable, it can be noticed that the value of 
the percentage consensus is quite low with only 62.3%. The 
consensus percentage is the uniformity of judgment wherein low 
consensus value corresponds to variation in judgments of the 
consulted experts. The consolidated expert judgment can be 
considered with relatively low uniformity because it has low 
percentage consensus.  
 
In the application of AHP, the relative weights given to a 
particular landslide factor depend solely on expert judgment. 
Based on experts’ judgment, Table 2 showed that the highest 
eigenvector obtained was 23.18% for the slope, followed by 
rainfall (21.50%), land cover (14.01%), soil texture (13.16%), 
and distance to fault line (8.70%) while the lowest was found in 
the elevation factor (6.61%). All the experts consulted gave high 
values to slope and rainfall compared to other factors which was 
the reason why these two factors got the highest eigenvector. 
Slope and rainfall were given more importance than the other 
factors because of their proven influence in the occurrence of 
landslide. Related studies conducted give emphasis on slope and 
the occurrence of landslide on steep slopes. For instance, Komac 
(2005) found that slope got the highest relative weight while 
Mondal & Maiti (2012) gave slope the second highest weight 

Range  Susceptibility  Area (ha) 
Percentage 

(%) 

1.430–2.214  Very low  11,576  25.48 

2.214–2.483  Low  14,070  30.97 

2.483–2.703  Moderate  11,010  24.23 

2.703–2.935  High  6,280  13.82 

2.935–3.646  Very high  2,502  5.51 

Table 3. Area in ha per susceptibility class. 
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Figure 4. Landslide susceptibility map of Pagsanjan–Lumban Watershed. 
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Table 4. Area per susceptibility class of municipalities within Pagsanjan–Lumban Watershed. 

Table 2. Consolidated results of experts judgements and normalized eigenvector. 

characterized with steep slopes are generally more prone to 
landslide. On the other hand, elevation had the lowest computed 
eigenvector which corresponds to low influence to landslide 
occurrence. It also showed that the consistency of the results is 
very much affected by the number of elements used in the pair–
wise comparison. 
 
Having experts from different fields of interest resulted also in the 
variability of judgments which eventually led to the low 
consensus percentage. However, the consolidated judgment was 
still within the acceptable threshold of consistency ratio set by 
Saaty.  

The results of this study can be utilized by local government units 
(LGUs) in improving their comprehensive management plan to 
address issues related to hazards in their areas. Also, this may aid 
in formulating policies that would further improve their capacity 
in addressing disaster risk related issues and concerns. 
 
 
CONCLUSION AND RECOMMENDATION 
 
The results of the study showed that slope had the largest 
contribution to the occurrence of landslide based on the computed 
relative weights through AHP. This suggests that areas 

FACTORS A B C D E F G Normalized 

(a) Elevation 1 2/5 1/3 1/3 2/5 1/2 6/7 6.61% 

(b) Slope   1 1 3 1 3/4 1 1/2 2 3/5 23.18% 

(c) Rainfall     1 1 1/4 2 5/7 1 3/4 1 2/3 21.50% 

(d) Soil texture       1 5/6 7/8 1 2/3 13.16% 

(e) Land Cover         1 1 1/6 2 14.01% 

(f) Fault           1 1 1/3 12.84% 

(g) Road             1 8.70% 

TOTAL               100% 

Municipality 
Area per susceptibility class (ha)  Total 

(ha) Very low  Low  Moderate  High  Very high 

Cavinti  2,750.48  2,947.12  1,553.35  532.4  63.64  7,847.01 

Kalayaan  40.41  986.14  145.16  821.1  211.16  2,203.93 

Liliw  288.43  5.76  1.43  1.2    296.79 

Lucban  529.45  1,675.06  1,678.46  1,754.6  893.97  6,531.58 

Luisiana  1,928.65  1,328.78  1,351.82  62.5  9.02  4,680.78 

Lumban  1,824.52  2,252.17  2,397.33  1,297.1  659.86  8,430.97 

Magdalena  724.54  836.50  269.57  28.9  0.0005  1,859.50 

Majayjay  2,253.71  2,338.38  1,365.19  653.9  155.93  6,767.08 

Mauban        1.04  0.16  1.20 

Paete  7.37  94.91  499.37  456.6  324.08  1,382.31 

Pagsanjan  689.09  1,647.60  1,788.63  613.2  168.10  4,906.61 

Sampaloc  518.13  173.10  50.56  10.3  3.19  755.32 

Tayabas  3.60  10.03  34.48  53.9  35.01  137.02 

Laguna Lake  180.52  37.57  17.46  1.62    237.18 
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One of the requisites in generating accurate results from 
modelling is the availability of good data sets of the study area. 
Hence proper characterization of the watershed especially its 
biophysical profile must be undertaken and thoroughly conducted. 
The use of updated thematic maps alongside with updated 
geographic data sets should be greatly considered to come up with 
more reliable results.  
 
The use of AHP in assessing landslide susceptibility captured the 
potential of this tool in integrating the knowledge and experiences 
of the experts into the model. However, the number of experts 
should be increased in future studies so that there will be more 
choices if ever some of the judgments appeared to be inconsistent.  
 
Moreover, it is highly recommended that monitoring of landslide 
occurrences in the area must be established so that future studies 
will have a means to validate the results of the model. Likewise, it 
is recommended that the profile of the watershed, both in the 
biophysical and socio–economic aspects, are being updated. 
Some of the thematic layers seem to be outdated such as the land 
cover map which was produced using satellite images taken in 
2010.  
 
Aside from the development of a landslide susceptibility map, it 
is also recommended that other susceptibility maps such as flood, 
soil erosion, and fire should be modeled as well to generate a 
multi–hazard map of the watershed. This is important to minimize 
the danger and damages these climate hazards can bring to the 
watershed. 
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