Ecosystems & Development Journal 8(2): 50–55 October 2018 ISSN 2012–3612

Determining the Climatic Sensitivity of Wallaceodendron celebicum Koord Tree Using Selected Physico—Structural Characteristics

Willie P. Abasolo¹

ABSTRACT

In order to determine the climate sensitivity of a 100-year-old Wallaceodendron celebicum Koord tree, selected physicostructural properties of its wood were used. Oven-dried specific gravity was unaffected by both increasing temperature and amount of rainfall. For fiber morphology, only lumen diameter was significantly affected by temperature while only cell wall thickness was significantly influenced by the amount of rainfall. Thus, the different physical and anatomical properties of the tree were not sensitive to changes in both temperature and amount of rainfall. Nonetheless, temperature tends to decrease the cell wall thickness while the amount of rainfall tends to improve it

Keywords: Carbon sequestration, climatic sensitivity, rainfall, temperature, Wallaceodendron celebicum Koord

INTRODUCTION

Secondary growth in trees is a dynamic and continuous process that involves cell propagation, xylem enlargement and specialization, secondary wall biosynthesis, and cell death (Zhang et al. 2014). It is a rhythmic biological process determined by regular environmental oscillation within the annual growth cycle (Brienen 2005). This growth in trees is determined by the changes in temperature and precipitation (Dunwiddie 1979). Normally, the vascular cambium is active when water is readily available at high temperatures and inactive when water is scarce at low temperature (Waisel & Fahn 1965).

Temperature affects the cambial activity of the tree by influencing the amount of available water to the plant. In temperate countries, temperature increase initiates cambial reactivation and xylem differentiation (Begum *et al.* 2013) during spring time by melting the ice. While in tropical regions, temperature increase tends to lead to the seasonality of moisture availability (Rozendaal & Zuidema 2010) as it affects the water evaporation rate. This in turn causes drought resulting to the dormancy of the cambium (Marcati *et al.* 2016). This periodic cambial dormancy and reactivation plays an important role in determining the quality of wood and the environmental adaptability of the tree (Begum *et al.* 2013).

The width of the annual rings or growth rings is a reflection of the sensitivity of the tree to environmental changes. It also provides a picture of the lifetime growth rates and physiological responses of the plants (Zuidema *et al.* 2012). Through this, past environmental events (Norton *et al.* 1987) like prolonged drought and extreme heat (Mbow *et al.* 2013) could be observed.

Another advantage of using annual rings as climate change indicator is that it could also be cross—referenced to the exact year when a particular climate irregularity occurred sometime in the past (Carrier & Urbinati 2004).

Besides its use to detect climate irregularities, annual ring is a direct estimate of tree age (Woodgate *et al.* 1994). By periodically removing the bark and wood samples, Chowdhury (1940), was able to determine the precise age count in pines and other species. Vigorous growth produces large diameter thinwalled earlywood cells while drought results to small diameter—thick walled latewood cells (Groover & Robischon 2006) resulting in the production of very distinct growth rings. However, irregular weather patterns could impede the activity of the cambium resulting in the formation of indistinct growth rings as well as the production of false rings and other structural irregularities. These irregularities could also result in changes in the structure of the material which would definitely alter its overall properties including its physical traits.

With this in mind, the present study attempted to use selected structural and physical traits of the wood to determine its climatic sensitivity.

METHODOLOGY

Sample Preparation

A 10-cm thick cross sectional disk was prepared from a Wallaceodendron celebicum Koord (Banuyo) trunk 0.5m above the ground. After determining the diameter, a straight line was drawn across the radius of the trunk. From the pith, the growth rings were counted along this straight line. From the core, the 10^{th} growth ring was carefully identified using a hand lens in

¹Professor

Department of Forest Products and Paper Science
College of Forestry and Natural Resources,
University of the Philippines Los Baños, College, Laguna
Corresponding author: wpabasolo@up.edu.ph

order to eliminate the possibility of including false rings in the sample. And from there, every succeeding 10th growth ring was identified up to the peripheral portion of the stem. Sample blocks were then prepared from these rings.

Oven-Dried Specific Gravity

A set of 1 cm³ sample blocks were prepared from every 10th growth ring. Ten blocks per growth ring were made. Samples were oven-dried in an oven set at $100 \pm 3^{\circ}$ C until constant weight (Wo). Likewise, oven-dried volume (Vo) was determined using a vernier caliper. Specific gravity was computed using the formula:

Sp.
$$Grav = Wo/Vo \times Dw$$

Where:

Sp. Grav = Specific Gravity

Wo = Oven-dried weight (g)

Vo = Oven-dried volume (cm³)

Dw = Density of water (1g cm⁻³)

Fiber Biometrics

The matchstick samples were macerated in 50:50 solutions of glacial acetic acid and 20% hydrogen peroxide. Upon defibrillation, at least 30 whole fibers were randomly selected. Fiber length, fiber diameter, and lumen diameter were measured using a standard light microscope with a built-in vernier scale. Cell wall thickness was obtained using the formula:

Where:

CWT = Cell wall thickness (mm)

FD = Fiber diameter (mm)

LD = Lumen diameter (mm)

Average values coming from every portion were used in the evaluation.

Climatological Data

Rainfall and temperature data of the Philippines for the last 100 years were downloaded from the following website: http://sdwebx.worldbank.org/climateportal/index.cfm? page=downscaled data download&menu=historical

RESULTS AND DISCUSSION

Sample Description

Banuyo (Wallaceondendron celebicum Koord) is a premium wood species (DAO 19 1995) belonging to the Family Fabaceae. It normally grows up to 25–30 m tall and its wood is excellent in cabinet making, carving, sculpture, and high grade interior panels.

A cross sectional sample of the trunk was collected (Figure 1). Its average diameter was about 1.07 m. The annual rings were carefully counted and cross-matched to the year when the tree was actually planted sometime in 1902. Results showed that the growth ring count of 107 was within \pm 10% of the true age of the tree, which is an acceptable range similar to the findings of Alcorn et al. (2001) on Eucalyptus trees.

Considering the year the tree was planted and cross-matching it with the actual growth ring counts, a timeline beginning 1902 up

Figure 1. Cross section of the tree sample.

to 2009 was prepared. This was correlated to different properties of the wood observed at that particular growth ring of the tree.

Oven-Dried Specific Gravity

Oven-dried specific gravity is a reflection of the amount of cell wall substance that the wood possesses. It is one of the important wood traits because it is directly correlated to wood strength and flexibility (van Buijtenen 1969) and a good estimate of the amount of stored carbon (Baker et al. 2004).

Figure 2 shows the wood specific gravity pattern across the diameter of the trunk. Specific gravity tended to increase from 1902 to 1950 where it peaked at 0.70 followed by a decrease from 1960 to 2009. The year 1970 gave the lowest value with 0.55. Similar specific gravity trends were noticed in western hemlock species (DeBell et al. 2004). On the average, the overall wood specific gravity of the trunk was about 0.60.

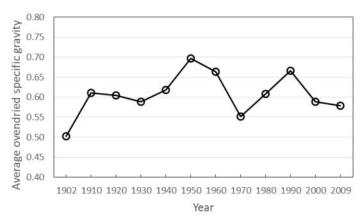


Figure 2. Oven-dried specific gravity pattern across the diameter of the trunk.

Fiber Biometrics

Wood formation depends on the activity of the vascular cambium of trees (Funada 2008). Such activities dictates the xylem cell characteristics including its fiber properties. Figure 3 depicts the fiber length profile across the diameter of the trunk. Fiber length showed a steady increase from 1902 to 1980 except in 1930 where a peculiar rise in fiber length was noticed. Without this point, it could be said that fiber length increased with age congruent to the findings of Hizal and Erdin (2016) on Alder wood.

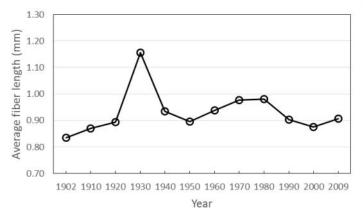


Figure 3. Fiber length profile across the diameter of the trunk.

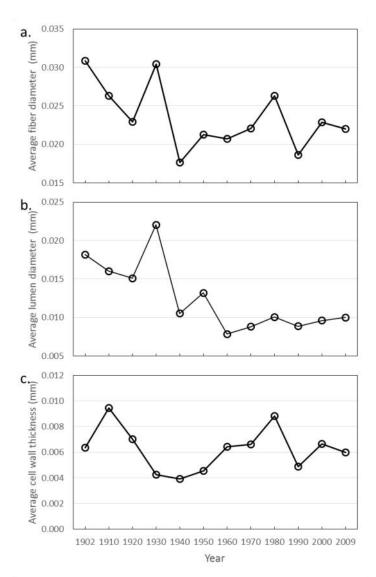


Figure 4. Fiber characteristics across the diameter of the trunk – a. Fiber diameter; b. Lumen diameter; c. Cell wall thickness.

Figure 4 shows the fiber diameter, lumen diameter of cell wall thickness distribution across the diameter of the trunk. Fiber diameter (4a) was a little unstable through the years. For the first 22 years it decreased from 0.031 mm to 0.023 mm followed by a sudden rise in 1930. Nonetheless, if the curve is smoothened, it could be said that fiber diameter decreased steadily through the

Fiber lumen diameter (4b) showed similar trend to fiber diameter. A steady decrease in diameter from 1902 to 2009 was observed except in 1930 where an unusual increase in lumen diameter was noticed. Finally, cell wall thickness (4c) peaked in 1910 at 0.0095mm and was lowest in 1940 at 0.004 mm. This was followed by a steady increase till 1980 followed by a decrease up to 2009.

Climatological Data

The Philippines is regularly visited by an average of 24 typhoons a year (Lapinig et al. 2015). Such visits could bring up to 1,000 mm of rain during its onset. Climatological data for the last 100 years for the Philippines are presented in Figure 5. A steady increase in temperature (5a) was observed for the last 100 years. Taking the average change per 10 years, approximately 0.25 °C increase was noticed. For every degree Celsius increase in global mean temperature, it was observed that there was a reduction in yield by 6.0% for wheat, 3.2% for rice, 7.4% for maize, and 3.1% for soybean (Zhao et al. 2017). It would be interesting to see the effect of this constant temperature rise on the properties of wood samples.

Amount of rainfall (5b) was highest in 1910 at 2937 mm followed by a drop from 1920-1930 to 2136 mm. This was followed by a

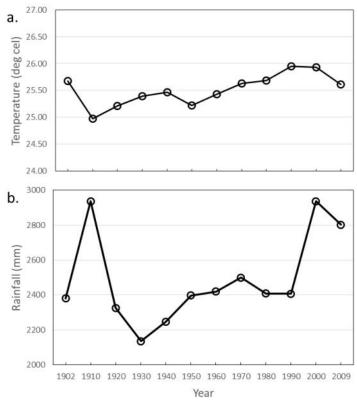


Figure 5. Climatological data of the Philippines for the last 100 years (http://sdwebx.worldbank.org/climate portal).

steady increase from 1940–1950. Interestingly from 1950–1990, rainfall was a bit stable at 2400 mm. In 2000, a sharp rise was again noticed to the 2937 mm mark.

Influence of Temperature on: Oven-Dried Specific Gravity

Figure 6 shows the influence of temperature on the specific gravity of the tree. The relationship was weak with a correlation coefficient of r = -0.22 ns. Nonetheless, temperature tended to negatively impact the specific gravity of the wood. Apparently as the tree was exposed to increasing temperature over its life span, it produced low density wood. Considering that wood specific gravity with stem size determines the amount of carbon sequestered in the wood (Chave et al. 2009; Osawa–Peters et al. 2014), it could also be deduced that temperature negatively influenced the carbon sequestration potential of the tree. This result was aligned with the global trend (Briffa et al. 2008) but contrary to the findings of Thomas et al. (2007) who observed a 20% increase in wood density of *Eucalyptus grandis* seedlings at higher temperatures. This discrepancy could be attributed to the difference in the samples used.

Fiber Morphology

Figure 7 depicts the relationship between temperature and fiber length. Similar to oven-dried specific gravity, fiber length did not show any significant relationship with temperature. However, a decreasing trend in fiber length decreased with increasing temperature. Nonetheless, the relationship was not significant (r = -0.048).

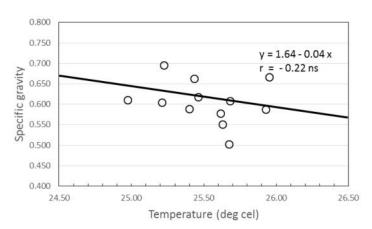
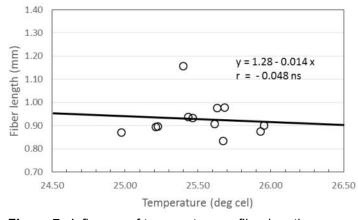



Figure 6. Influence of temperature on the specific gravity of the tree.

Figure 7. Influence of temperature on fiber length.

Figure 8 shows the influence of temperature on fiber diameter (8a), lumen diameter (8b) and cellwall thickness (8c). All the fiber traits were negatively influenced by temperature although, only lumen diameter gave a significant correlation with r = -0.46 at $\alpha = 95\%$. Similar findings were observed in maple wood (Bakhshi et al. 2011) and in black spruce saplings (Balducci et al. 2013). Increase in temperatures normally results to drought that reduces cell wall thickness while increasing lumen diameters (Martin–Benito et al. 2017).

Influence of Amount of Rainfall on:

Seasonal rainfall is directly linked to phenological events and wood properties (Worbes 2002). This is attributed to the control of available water on many physiological processes in trees (Taiz and Zeiger 2002) including cell expansion (Wei and Lintilhac 2007) and cell wall synthesis (Hsiao 1973).

Oven-Dried Specific Gravity

The relationship between specific gravity and amount of rainfall is depicted in Figure 9. Rainfall did not significantly affect the oven-dried specific gravity of the material. Precipitation normally activates the cambium influencing radial tree growth and wood density (Olivar et al. 2015). However, considering the

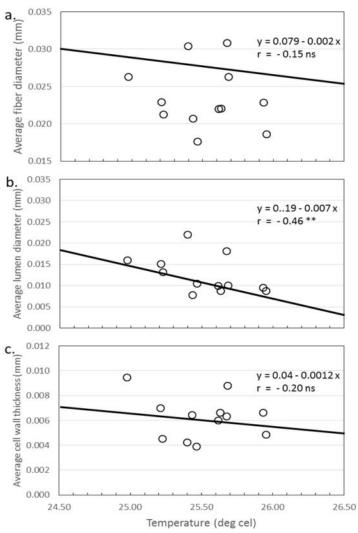
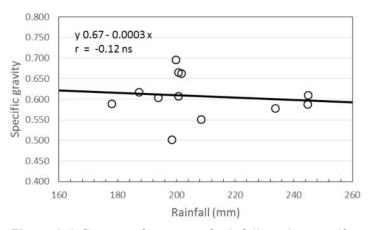



Figure 8. Influence of temperature on the different fiber traits. a. Fiber diameter; b. Lumen diameter; c. Cell wall thickness.

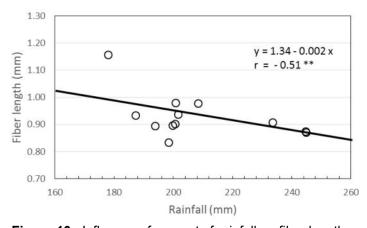


Figure 9. Influence of amount of rainfall on the specific gravity of wood.

rainfall pattern for the last 100 years, taking away year 1910 and 2000 where a drastic increase in rainfall were observed, it could be said that generally the rainfall patterns were more or less stable with ranges of about 2200–2400 mm.

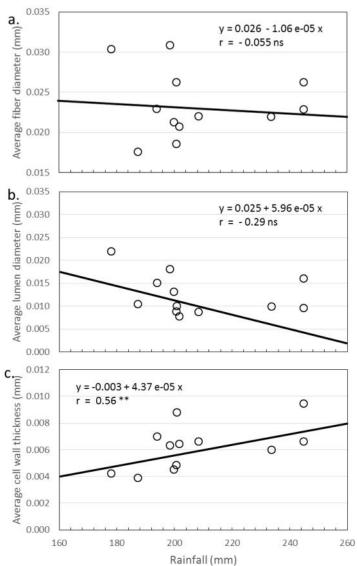

Fiber morphology

Figure 10 shows the interaction between fiber length and amount of rainfall. It was evident that fiber length was significantly affected by the amount of rainfall (r = -0.51) at $\alpha = 95\%$. Apparently, an increase in the amount of rainfall corresponded to a decrease in fiber length. Water affects cambial activities, cell expansion rate, and cell division (de Luis *et al.* 2011). In times of drought, the cambium reduces its activities to save energy (Mc Dowell 2011).

Figure 10. Influence of amount of rainfall on fiber length.

Figure 11 shows the influence of rainfall on fiber diameter (11a), lumen diameter (11b), and cellwall thickness (11c). Among the three fiber characteristics, only cell wall thickness gave a statistically significant result at $\alpha=95\%$. Cell wall thickness reflects the amount of carbon because it is indicative of the cellulose content of the walls. Thus, rainfall positively influenced the carbon sequestration potential of the tree. This is contrary to the result of Jyske *et al.* (2009) wherein cell wall thickness increased in water–stressed Norway spruce. One reason for this discrepancy could be attributed to their differences in plant subdivision. Spruce belongs to the

Figure 11. Influence of amount of rainfall on the different fiber traits. a. fiber diameter, b. lumen diameter, c. cell wall thickness.

Gymnosperms, which develops more thick—walled latewood when there is a reduction in available water while *Wallaceodendron celebicum* is an angiosperm where latewood development is not that prominent (Panshin & de Zeeuw 1978).

CONCLUSION

Wood formation depends on the cambial activities of a tree. These cambial activities are regulated by both internal and complex environmental factors as well as the sensitivity of the plant to such climatological variations. Normally, annual ring width is used to determine sensitivity of the plant to climate change. However it could lead to erroneous results especially when false and indistinct rings are present in the sample. The present study used selected basic physical and anatomical properties of the tree to determine its sensitivity to varying climate patterns. The different physical and anatomical properties of *Wallaceodendron celebicum* were not sensitive to both temperature and amount of rainfall, hence could not be used to detect varying climatological patterns.

Nonetheless, considering the direct relationship between specific gravity and carbon sequestration, it was deduced that temperature tends to decrease the carbon sequestration potential of the tree while rainfall tends to improve it.

LITERATURE CITED

- Alcorn, P.J., J.K. Dingle and J.E. Hickey. 2001. Age of stand structure in a multi-aged wet eucalypt forest at the Warra silvicultural systems trials. Tasforests. 13(2): 245-260.
- Baker, T.R., O.L. Phillips, Y. Malhi, S. Almeidas, L. Arroyo, A. Di Fiore, T. Erwin, T.J. Killeen, S.G. Laurance, W.F. Laurance, S.L. Lewis, J. Lloyd, A. Monteagudo, D.A. Neill, S. Patiño, N.C.A Pitman, N.M. Silva and R.V. Marinez. 2004. Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545–562.
- Bakhshi, R., M. Kiaei and S. Veylaki. 2011. The effect of climate on fiber properties of Maple wood (Acer velutinum Boiss). Middle East Journal of Scientific Research 8(4): 739–746.
- Balducci, L., A. Deslauriers, A. Giovannelli, S. Rossi and C.B.K. Rathgeber. 2013. Effect of temperature and water deficit on cambial activity and wood ring features in Picea mariana saplings. Tree Physiology 33: 1006-1017.
- Begum, S., S. Nakaba, Y. Yamagishi, Y. Oribe and R. Funada. 2013. Regulation of cambial activity in relation to environmental conditions: understanding the role of temperature in wood formation of trees. Phyiologia Plantarum 147(1): 46-54.
- Brienen, R.J.W. 2005. Tree rings in the tropics: A study on growth and ages of Bolivian rain forest trees. Promab Scientific Series 10. 145 p.
- Briffa, K.R., V.V. Shishov, T.M. Melvin, E.A. Vaganov, H. Grudd, R.M. Hantemirov, M. Eronen and M.M. Naurzbaev. 2008. Trends in recent temperature and radial tree growth spanning 2000 years across northwest Eurasia. Phil. Trans. R. Soc. B. 363: 2271-2284.
- Carrier, M. and C. Urbinati. 2004. Age-dependent tree-ring growth responses to climate in Larix decidua and Pinus cembra. Ecology. 85 (3): 730–740.
- Chave, J., D. Coomes, S. Jansen, S.L. Lewis, N.G. Swenson and A.E. Zanne. 2019. Towards a worldwide wood economics spectrum. *Ecology* letters 12: 351 – 366.
- Chowdhury, K.A. 1940. The formation of growth rings in Indian trees. *Indian Forest Rec.* 2(3): 41 – 57.
- Climate Change Knowledge Portal. 2018. Retrieved from http:// sdwebx.worldbank.org/climateportal/index.cfm? page=downscaled data download&menu=historical
- Debell, D.S., R. Singleton, B.L. Gartner and D.D. Marshall. 2004. Wood density of young- growth western hemlock: relation to ring age, radial growth, stand density, and site quality. Can. J. For. Res. 34: 2433-2442.
- De Luis, M., K. Novak, J. Raventós, J. Gricar, P. Prislan and K. Cufar. 2011. Cambial activity, wood formation and sapling survival of *Pinus* halepensis exposed to different irrigation regimes. For. Ecol. Manag 262:1630-1638.
- DENR. 1995. DAO 19-1995: Rates of forest charges pursuant to Republic Act 7171 and based on the FOB market price of forest products. DENR, Quezon City.
- Dunwiddie, P.W. 1979. Dendrochronological studies of indigenous New Zealand trees. New Zealand Journal of Botany 17:3. 251–266.
- Funada, R. 2008. Microtubules and the control of wood formation. In: Nick P. (Ed). Plant microtubules: Microtubules and the control of wood formation. Springer, Heidelberg. 83-119.
- Groover, A. & M. Robischon. 2006. Developmental mechanisms regulating secondary growth in woody plants. Current opinion in plant biology. 9: 55-58.
- Hizal, K.T., & N. Erdin. 2016. Radial variation of annual ring width and fiber dimension from natural and plantation trees of Alder (Alnus glutinosa L. Gaertner) Wood. Ormacncilik Dergisi. 12(2): 1-12.

- Hsiao, T.C. 1973. Plant responses to water stress. Annu Rev Plant Physiol. 24: 519-570.
- Jyske, T., T. Holtta, H. Makinen, P. Nojd, I. Lumme and H. Spiecker. 2009. The effect of artificially induced drought on radial increment and wood properties of Norway Spruce. Tree Physiology 30: 103-
- Lapinig, V.T. & J.M.M. Bolante. 2015. Typhoon Analysis: intensity, damage and casualty relationship in fractal context. NMSCST Research Journal 3(1): 76-86.
- Marcati, C.R., S.R. Machado, D.S. Podadera, N. Totti De Lara, F. Bosio and A.C. Wiedenhoeft. 2016. Cambial activity in dry and rainy season on branches from wood species growing in Brazilian Cerrado. Flora 223: 1-10.
- Martin-Benito, D., K.J. Anchukaitis, M.N. Evans, M. Del Rio., H. Beeckman and I. Cañellas. 2017. Effect of drought on xylem anatomy and water–use efficiency of two co–occurring Pine species. *Forests* 8: 332–351.
- Mbow, C., S. Chhin, B. Sambou, and D. Skole. 2013. Potential of dendrochronology to assess annual rates of biomass productivity in savanna trees of West Africa. *Dendrochronologia* 31: 41–51.
- Norton, D.A., J.G. Palmer and J. Ogden. 1987. Dendroecological studies in New Zealand1. An evaluation of tree age estimates based on increment cores. New Zealand Journal of Botany 25(3): 373-383.
- Olivar, J., C. Rathgeber and F. Bravo. 2015. Climate change, tree-ring width and wood density of pines in Mediterranean environments. *IAWA Journal* 36(3): 257–269.
- Osawa-Peters, O.L., S.J. Wright and A.E. Zanne. 2014. Radial variation in wood specific gravity of tropical tree species differing in growthmortality strategies. American Journal of Botany 101(5): 803-811.
- Panshin, A.J. and C. de Zeeuw. 1978. Textbook of Wood Technology. Vol. 1. McGraw-Hill Inc.
- Rozendaal, D.M.A. and P.A. Zuidema. 2010. Dendroecology in the tropics; a review. Trees 25: 3-16.
- Taiz, L. and E. Zeiger. 2002. Plant physiology. 3rd Ed. Sinauer Associates, Massachusetts. 690 p.
- Thoma, D.S., K.D. Montagu and J.P. Conroy. 2007. Temperature effects on wood anatomy, wood density, photosynthesis and biomass partitioning of Eucalyptus grandis seedling. Tree Physiol. 27(2):251– 260.
- Van Buijtenen, J.P. 1969. Progress and problems in forest tree selection. Proc. South For. Tree Improv. Conf. 10: 17–26.
- Waise, I.Y. and A. Fahn. 1965. The effects of environment on wood formation and cambial activity in Robinia pseudacacia L. The New Phytologist. 435–443.
- Wie, C. & P.M. Lintilhac. 2007. Loss of stability: a new look at the physics of cell wall behavior during plant cell growth. Plant Physiol. 145: 763-772.
- Woodgate, PW, WD Peel WD, KTRitman, JE Coram, A Brady, AJ Rule & JCG Bank. 1994. A study of old–growth forests of East Gippsland. Department of Conservation and Natural Resources, Victoria 240 Victoria Parade, East Melbourne. p 286
- Worbes, M. 2002. One hundred years of tree-ring research in the tropicsa brief history and an outlook to future challenges. Dendrochronologia 20/1-2: 217-231.
- Zhang, J., K. Nieminen, J.A. Alonzo Serra and Y. Helariutta. 2014. The formation of wood and its control. Current opinion in Plant Biology 17:56-63.
- Zhao, C., B. Liu, S. Piao, X. Wang, W.B. Lobell, Y. Huang, M. Huang, Y. Yao, S. Bassu, P. Ciais, J.L. Durand, J. Elliott, F. Ewert, I.A. Janssens, T. Li, E. Lin, P. Martre, C. Muller, S. Peng, J. Peñuelas, A.C. Ruane, D. Wallach, T. Wang, D. W., Z. Liu, Y. Zhu, Z. Zhu and S. Asseng. 2017. Temperature increase reduces global yields of major crops in four independent estimates. PNAS 114(35): 9326-9331.
- Zuidema, P.A., R.J.W. Brienen and J. Schongart. 2012. Tropical forest warming: looking backwards for more insights. Trends in Ecology and Evolution 27(4): 193-194.