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ABSTRACT. Sediment retention is among the most important ecosystem services impacted by anthropogenic drivers
of land cover change. However, there have been few efforts to gauge the impacts of land cover configuration on
the total ecosystem sediment retention in a landscape. The study aims to do so by computing changes in landscape
pattern metrics of catchments draining from the Mt. Makiling Forest Reserve (MMFR) using FRAGSTATS. Then,
changes in sediment retention index (SRI) were modeled with the InVEST sediment delivery ratio (SDR) model.
Statistical analysis of 64 landscape pattern metrics vis-a-vis SRI using a spatial error model showed eight class-level
metrics statistically significant at ot = 0.05. These were the edge density (ED) of built-up areas (3 =-0.0039), perennial
crops (3 = 0.0025), and grasslands (3 = 0.0102); the disjunct core area density (DCAD) annual crops (3 = 0.0243),
grasslands (3 =-0.0064), perennial crops (3 =-0.0068); and the mean radius of gyration (GYRATE) of perennial crops
(p =0.0002) and annual crops (f = 0.0003). However, despite this statistical significance, less than 5% of changes
in SRI can be attributed to landscape configuration. This indicates that while landscape configuration influences
sediment retention, landscape composition or land cover area remains an important predictor of sediment retention.

Keywords: landscape metrics, landscape pattern, sediment retention, spatial error model

INTRODUCTION

Human-induced land use and land cover dynamics
often result in considerable risks to ecology and
human well-being (Adepoju et al., 2019; Moanga,
2020). Such changes could disrupt landscape patterns,
interfere with ecological processes, compromise
the landscape’s functional integrity, and decrease
ecosystem services (Hasan et al., 2020; Martello et
al., 2023). Thus, effective landscape management is
contingent on understanding the linkages between
landscape patterns and ecosystem services (Duarte ef
al., 2018; Qiu et al., 2018; Saidi & Spray, 2018; Loc et al.,
2020; Dong et al., 2022).

Landscape patterns depict the various aspects of
spatiotemporal heterogeneity of an inherently complex
landscape and are usually quantified using algorithms
called landscape pattern metrics (McGarigal, 2012;
Remmel & Mitchell, 2021). These metrics comprise
composition and configuration (Abdolalizadeh et al.,
2019; Yohannes et al., 2020). Landscape composition is
non-spatial and pertains to the number and proportion
of land cover classes, while landscape configuration
describes the spatial arrangement, position, and
orientation of land cover, including the shape and
size of patches (Hou & Estoque, 2020; Liu et al., 2020;
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Redhead et al., 2020; Fu et al., 2021). These metrics
may also be classified according to their use case.
Structural metrics, for example, quantify the physical
landscape structure without reference to a specific
ecological process of species, while functional metrics
do so in a particular context and thus, need additional
parametrization (McGarigal, 2012; Gustafson, 2019; ).

It is well-established that landscape patterns influence
ecosystem services, with fragmentation being the
most researched factor and known to cause adverse
impacts on the supply of ecosystem services (Fu et al.,
2013; Mitchell et al., 2015; Hasan et al., 2020). A meta-
analysis of 121 journal articles showed that different
aspects of landscape patterns influence water quality,
disease control, pest control, pollination, and aesthetic
ecosystem services (Duarte ef al., 2018). Similarly, the
structure of urban green spaces seems to affect urban
microclimate and promises to improve the mitigation
of urban heat islands (Du et al., 2019; Hou & Estoque,
2020; Li et al., 2021; Gao et al., 2022). Biodiversity and
habitat quality are also affected by landscape patterns
(Zhang et al., 2022). Interestingly, some studies also
aim to relate landscape patterns as crop and ecological
resilience indicators to climate change (Cushman &
McGarigal, 2019; Honkaniemi et al., 2020; Redhead et
al., 2020).

While there are numerous studies on the influence of
landscape patterns on soil erosion and sediment export,
most of these tend to focus on landscape composition
(Srichaichana et al., 2019; Bouguerra et al., 2020; Hasan
et al., 2020; Negese, 2021; Li et al., 2022a; Li et al., 2022b).
Comparatively, the impact of landscape configuration
on the sediment retention services of ecosystems
has been less extensively examined-especially in
the Philippine context (Duarte et al., 2018). Research
studies of this nature, however, do not always measure
the linkages between landscape configuration and
sediment retention, but those that do, demonstrate
the need to quantify such interactions (Ahmadi et al.,
2018; Yohannes et al., 2020; Xia et al., 2021; Martello
et al., 2023). Particularly, it is important to identify
what variables or landscape pattern metrics would
significantly influence the magnitude of changes in
sediment retention. Hence, the study aimed to assess
how changes in landscape configuration affect the
degree of ecosystem sediment retention at a catchment
level through the quantification and statistical analysis
of landscape-level and class-level landscape pattern
metrics and the sediment retention index.

METHODOLOGY

Study area

The study was modeled in the watersheds along the
southern portion of Laguna de Bay which intersects
with the MMEFR or the Mt. Makiling Forest Reserve.
MMER is a protected area along the southwestern part
of the Island of Luzon, about 60 km southeast of Metro
Manila, and was designated as an ASEAN Heritage
Park in 2013 (Castillo et al., 2021). The watersheds it
intersects play a significant role with local communities
and ecosystems within its catchments through the
provisioning of ecosystem services (Paelmo et al., 2015;
Clanor et al., 2016; Spiegelberg et al., 2017). It is also an
important reservoir of biological resources, covering
a variety of ecosystems, including lowland evergreen
rainforests and lower montane forests which have
yielded high floristic, faunal, fungal, and microbial
diversity (Nacua et al., 2018; Arguelles, 2019; Gonzalez
et al., 2020; Magcale-Macandog et al., 2022).

The study looked at 15 watersheds intersecting with
the MMEFR ranging from 88 ha to almost 20,000 ha
draining into the Laguna de Bay (Figure 1). These
were delineated from an Interferometric Synthetic
Aperture Radar (IfSAR) derived 5 m Digital Terrain
Model (DTM) provided by the National Mapping and
Resource Information Authority (NAMRIA) in 2016.
ArcHydro was used in delineating and subdividing the
watersheds into 207 individual catchments. This used
an eight-direction flow model (D8) and a 40,000-pixel
threshold value equivalent to 100 ha or 1 km2. Most
of these catchments (60%) are at most 2 km?, and 37%
are less than 1 km?2. The average catchment perimeter
is 10.11 km, with an average basin length of 3.42 km.

Landscape pattern metrics

The program FRAGSTATS was used to assess and
quantify landscape pattern metrics. It provides detailed
statistical information on various landscape metrics
at different scale levels. However, for this study, 14
landscape pattern metrics were used for landscape
pattern analysis of each catchment in the study area
(Table 1). All 14 metrics are structural metrics that
measure landscape configuration. The details of each
landscape pattern metricused in the study are described
in Annex 1. These can be grouped according to their
utility, as many tend to measure similar attributes of
landscape patterns. As the name suggests, area-edge
metrics describe the size and density of patches and the
extent of their edge in the landscape; they are among
the most fundamental metrics in landscape ecology
(McGarigal, 2015). Core area metrics are similar to
area-edge metrics but also account for edge effects;




Ecosystems and Development Journal | Vol. 12 | No. 2 | 2022

17

%
j e
] e
- s
- .
A luieE _.-""-:' 5 ‘
P i
4 T = —s
E ._r'_" s - ."r'"'i"- T "*"] r 'l
i e : 3 i
AR :
= e S B i .
L ! e
e o b LS '.l.x: . |.!.'{:- 1
- L ! LE
L oy -
3 i { o
? i - H
« - = -
b, B T - e
o s .-I_" = .-'.__|L
L i - r
b 3
i " 5 ¥
i -
.\.I = L r
1 ¥
b / e
5 H —a
f I
L 1
; ] ¢ gl
&t L k
L )
L |
1 .
i .
} k-
| FRFRD "y
- Y
[ wamnma E e o
Bt DR T ]
L, NN iy 3 n |
' ' o —

Figure 1. Location map of the study area.

contagion-interspersion metrics describe the level of
land cover fragmentation and aggregation (McGarigal,
2012). Lastly, connectivity metrics look at how well-
linked and enmeshed each patch type of the landscape
mosaic is, while diversity metrics describe the degree

of heterogeneity in the landscape (Duarte ef al., 2018).

Table 1. List of landscape fragmentation metrics used in the study.

Type of metric Landscape metric Abbreviation
Area-edge metrics Patch density PD
Edge density ED
Mean radius of gyration GYRATE
Largest patch index LPI
Core area metrics Disjunct core area density DCAD
Contagion- Contagion index CONTAG
Interspersion L
metrics Aggregation index Al
Landscape division index DIV
Splitting index SPLIT
Connectivity metrics  Patch cohesion index COHES
Diversity metrics Patch richness PR
Patch richness density PRD
Shannon’s diversity index SHDI
Simpson’s diversity index SDI

Aside from the landscape-level metrics, class-level
metrics were also computed. These are like landscape-
level metrics but disaggregated by land cover types.
Nine landscape pattern metrics were computed for
each of the six land cover classes, adding to 45 class-
level metrics (Table 2).

Sediment retention modeling

The SDR Model of the InVEST software version 3.3.3.
was used to quantify and spatially visualize sediment
retention under the various land cover configurations.
InVEST is a geospatial modeling platform that is one of
the most widely used for modeling ecosystem services
in historical and future contexts (Agudelo et al., 2020;
Gomes et al., 2021; Meraj et al., 2022; Nedkov et al.,
2022).

The SDR model estimates the sediment retention
service of an ecosystem by comparing the avoided
soil loss of a land cover type to bare soil (Hamel et al.,
2015; Sharp et al., 2018). This is operationalized in the
model through the SRI (Equation 1), which looks at the
soil loss of a pixel given a particular rainfall erosivity,
soil erodibility, and slope length, and gauges the effect
of the vegetative cover and conservation practices by
weighing it against its respective sediment delivery
ratio (Borselli et al., 2008; Hamel et al., 2017; Sharp et
al., 2018). This model is particularly practical since it
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Table 2. Class-level fragmentation metric codes for each land cover type.

Class-level fragmentation metric code

Metric
Annual crop Built-up Forest Grassland Perennial crop
PD PD_AC PD_BU PD_F PD_GL PD_PC
LPI LPI_AC LPI_BU LPI_F LPI_GL LPI_PC
ED ED_AC ED_BU ED_F ED_GL ED_PC
GYRATE GYRATE_AC GYRATE_BU GYRATE_F GYRATE_GL GYRATE_PC
DCAD DCAD_AC DCAD_BU DCAD_F DCAD_GL DCAD_PC
COHES COHES_AC COHES_BU COHES_F COHES_GL COHES_PC
DIV DIV_AC DIV_BU DIV_F DIV_GL DIV_PC
SPLIT SPLIT_AC SPLIT_BU SPLIT_F SPLIT_GL SPLIT_PC
Al Al_AC Al_BU Al_F Al_GL AI_PC
(Equation 1) identified, and climatic data for each weather station
were collected from 1980 to 2010 to compute for the
(Aj_in + D2+ — gl climatological normals of each station and obtain the
Isr = RiK; | S; DMtz M. (22.13)m (1= CiP)SDR; average annual precipitation data needed to compute
' for rainfall erosivity. Annual precipitation of nearby
stations was well within the range of values from
Where:

R, = rainfall erosivity (MJ-mm(ha-hr)™)

K, = soil erodibility (ton-ha-hr(M]-ha-mm)™)

S, = slope factor computed as 10.8-sin(0) + 0.03
where 6<9% or 16.8-sin(0) - 0.50, where 6 > 9%

A, = contributing area (m?) at the inlet of a grid cell

D = grid cell linear dimension (m)

x,= Isina,| + lcos &,| where a, is the aspect direction

for grid cell i

m = RUSLE length exponent factor

C, = crop-management factor

P, = support practice factor

SDR, = sediment delivery ratio

The rainfall erosivity factor (R) was computed using
an equation developed by Lee and Lin (2015) which
relates annual rainfall erosivity in MJ-mm(ha-hr)™ to
annual average precipitation (Equation 2). This was
selected since it was tested to have good agreement
with observation data from 10-year rainfall data in
55 stations across Taiwan with over 16,000 recorded
storm events and annual precipitations ranging
from 1,300 mm to 4,000 mm. To ensure sufficient
coverage of the study area for interpolation, Philippine
Atmospheric Geophysical and Astronomical Services
Administration (PAGASA) climate stations within a
50-km buffer from the centroid of the study area were

which Equation 2 was developed and tested. An R
factor raster was generated by interpolating rainfall
erosivity values from the PAGASA climate stations
using empirical Bayesian kriging with a thin plate
spline semivariogram (Gupta et al., 2017; Javari, 2017;
Yang & Xing, 2021).

(Equation 2)
R = 2.74P1?

Where: P =average annual precipitation (mm ha™ ")

Soil erodibility (K) (Table 3) was computed for each
pixel by utilizing a digital soil map from the Bureau
of Soil and Water Management and assigning soil
erodibility values of each soil type based on its textural
class, and organic matter content (OMC) converted to
SI metric units or tha-hr (ha-MJ-mm)" (Foster et al.,
1981; Schwab et al., 1981; Parveen & Kumar, 2012). This
was used since the values were empirically calculated
based on the soil erodibility nomograph (Wischmeier
et al., 1971) and equation (Wischmeier & Meyer, 1973)
which is the most widely used method to estimate
K-factor and had also been adapted for RUSLE2
(Dabney et al., 2012; Auerswald et al., 2014; Corral-
Pazos-de-Provens et al., 2022).
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Table 3. K-factor values converted to t-ha-hr (ha-MJ-mm)~' based on
soil textural class and OMC.

Soil texture Average OMC OMC < 2% OMC > 2%
Clay 0.02897 0.03161 0.02766
Clay loam 0.03951 0.04346 0.03688
Coarse sandy 0.00922 0.00922 0.00922
loam
Fine sand 0.01054 0.01185 0.00790
Fine sandy 0.02371 0.02897 0.02239
loam
Heavy clay 0.02239 0.02502 0.01976
Loam 0.03951 0.04478 0.03424
Loamy fine 0.01449 0.01976 0.01185
sand
Loamy sand 0.00527 0.00659 0.00527
Loamy, very 0.05136 0.05795 0.03293
fine sand
Sand 0.00263 0.00395 0.00132
Sandy clay 0.02634 0.02634 0.02634
loam
Sandy loam 0.01712 0.01844 0.01580
Silt loam 0.05005 0.05400 0.04873
Silty clay 0.03424 0.03556 0.03424
Silty clay loam 0.04214 0.04610 0.03951
Very fine sand 0.05663 0.06058 0.04873
Very fine 0.04610 0.05400 0.04346
sandy loam

Sources: (Foster et al., 1981; Schwab et al., 1981; Parveen & Kumar, 2012)

Lastly, C factor values were based on two sources,
David (1988) and Benavidez et al. (2018). The study uses
a land cover dataset which includes a combination of
existing and modeled land cover maps from Almarines
(2019). Maps for 2010 and 2015 were sourced from
NAMRIA. Conversely, the land cover maps for 2020,
2025, 2030, and 2035 were modeled using a hybrid
Markov chain-multilayer perceptron neural network
(MC-MPNN) model with an accuracy rate of 77.6%.
Since the model accuracy is on the lower end of
acceptability, the study uses the land cover dataset to
determine general trends of land cover patterns in the
landscape for SRI computation and statistical analysis.
Hence, it also avoids using the dataset to specify likely
areas of projected land conversion and inferring the
potential impacts of these projected changes because
this would require a comprehensive breakdown of
the prerequisite stages of land cover projection. These
stages include filtering and grouping of historical land
cover processes, generation of transition probability
matrix, identification of type and influence of driver
variables used in each transition submodel, and

generation of transition probability maps; all of which
are not within the scope of the study.

All the spatial inputs for the SDR model were converted
to 5-m resolution raster grids. Hence, the resulting
model outputs also have a 5-m resolution. The
summary of all the input data used for SDR modeling
is shown in Table 4.

Table 4. Data requirements and data sources utilized for the SDR
model.

Input data Source
Digital terrain model IfSAR-derived DTM from
NAMRIA (2016)

Rainfall erosivity Climatological data from
PAGASA climate stations

(1980-2010)

R values computed using
Equation 1 (Lee & Lin, 2015)

Soil erodibility Soil maps from BSWM
Soil erodibility values from
Schwab et al. (1981)

Land cover 2010 and 2015 land cover

maps from NAMRIA

Projected land cover maps
were from an MC-MPNN
(Almarines, 2019)
Watershed boundary Delineated from DTM using
ArcHydro
C and P factors Benavidez et al., 2018; David,
1988

Statistical analysis

Multiple regression was used to assess the relationship
between SRI and landscape pattern metrics —landscape-
level and class-level fragmentation metrics. Multiple
regression typically follows the formula:

(Equation 3)
Y = Bo + P1X1 + B2Xo + B3X3 + -+ Bp X,

Where:
Y = predicted value of the dependent variable
X = predictor or independent variables
po =beta coefficients

Once a regression model was developed, each
independent variable's variance inflation factor (VIF)
was computed (Equation 4). This allows the detection
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of multicollinearity in the regression model, which
indicates a correlation between independent variables
in the model and, thus, could negatively impact the
regression outputs (Miles, 2014). Independent variables
with high multicollinearity were removed from the
revised regression model (Craney & Surles, 2002).

(Equation 4)
VIR = 1~
Where:
VIF, = variance inflation factor for independent
variable i

R?= computed R? for independent variable i

Spatial autocorrelation was also measured for both the
dataset and the revised regression model. The spatial
correlation of a variable with itself through space
measures how distance influences the variable; this
quantifies the presence of systematic spatial variation
through similarity and clustering of nearby objects
(Dubin, 2003). This is important since spatial patterns
may provide insights into underlying factors affecting
ecological processes (Lichstein ef al., 2002). In addition,
a review of a decade of research shows that ecological
regression models which do not incorporate spatial
autocorrelation tend to misestimate coefficients by 25%
(Dormann, 2007). To assess spatial autocorrelation,
Moran's I test for global spatial autocorrelation was
used (Equation 5). It is based on cross-products of
the deviations from the mean and is calculated for
observations on a variable at two locations across links
(Getis, 2010).

(Equation 5)
= n X 2w (x — %) (x; — x)
So Yilxi—x )2
Where:
I=Moran’s |

x, = predictor or independent variables

w, = elements of the weight matrix at locations i
and j

S, =s the sum of the weight matrix elements equal

toY. ) w,

7Y

Furthermore, Geary’s C statistic (Equation 6) was
computed to measure the heteroskedasticity of the
model residuals based on the deviations in responses

of each observation with one another (Geary, 1954).
Its value is expected to be 1 without autocorrelation
regardless of the specified weight matrix (Gunaratna
et al., 2013).

(Equation 6)

_n—lZiZjWij(xi—xj )?
o 25 Ti(xi—x )2

Where:
C = Geary’s C statistic
x, = predictor or independent variables
w, = elements of the weight matrix at locations i
and j
S, = s the sum of the elements of the weight matrix

' equal to Y. 3w,

If spatial autocorrelation is significant, a spatial
regression model will be used. In this case, the spatial
error model was used to analyze spatial autocorrelation
in the model residuals. It incorporates spatial effects
through error terms in the model (Equation 7).

(Equation 7)
y=xB+AWe+§)

Where:
y = predicted value of the dependent variable
x = predictor or independent variables
B = beta coefficient
A = spatial error coefficient
& = vector of uncorrelated error terms
We = vector of error terms, spatially weighted
using the weights matrix (W)

RESULTS AND DISCUSSION

Changes in sediment retention

The changes in land cover in the landscape led
to changes in the sediment retention index of the
catchments in the study area. The InVEST SDR model
was used to estimate the SRI of the catchments and
simulated the degree of spatial variation in SRI given
the land cover for 2010, 2015, 2020, 2025, 2030, and 2035.
The univariate statistics (e.g., mean, median, standard
deviation, sample variance, kurtosis, skewness, range)
of the catchment-level sediment retention index are
listed in Table 5.
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Table 5. Univariate statistics of the modeled catchment sediment
retention index

Sediment retention index

Statistic
2010 2015 2020 2025 2030 2035
Mean 0.9914 0.9487 0.9541 0.9516 0.9486 0.9468
Median 0.5439 0.4390 0.4315 0.4298 0.4299 0.4298
Standard 1.2057 1.1716 1.1800 1.1777 1.1723 1.1701
deviation
Sample 1.4537 1.3726 1.3924 1.3869 1.3743 1.3691
variance
Kurtosis 3.9071 4.4478 4.4907 4.5435 4.6032 4.6177
Skewness 1.8181 1.9040 1.9177 1.9241 1.9238 1.9246
Range 7.0746 7.0819 7.0901 7.0939 7.1273 7.1250

The temporal changes in univariate statistics indicate
that the SRI in the landscape decreased from 2010
to 2035. Both the mean and median values showed
a decreasing trend. In 2010, the mean SRI of the
catchments was 0.99 and had a median value of 0.54;
by 2035, this changed to 0.94 and 0.43, respectively.
This decreasing trend is evident for all the transition
periods except for 2015-2020, where the mean SRI had
increased. Moreover, the highly positive skewed SRI
data have a growing trend in skewness. This suggests
that more catchments have shifted to lower SRI classes.
Likewise, kurtosis follows a similar course — becoming
increasingly leptokurtic. Thus, it implies that the
combined weight of the tails in the SRI dataset (i.e.,
lower SRI values) has increased relative to the rest of the
SRI distribution. Catchment-level net change analysis
of the dataset presents a comparable assessment of
the temporal shifts in SRI. The frequency distribution
of the percent change in SRI of each catchment for all

transition periods is summarized in Figure 2. The 2015-
2020 period had the greatest net increases in SRI, with
58% of catchments gaining SRI. This period was the
only time when more catchments had a net gain in SRI
compared to the aggregate number of catchments with
either no change or a net loss. The rest of the transition
periods are characterized by a predominant net loss in
SRI. The highest number of net losses was observed in
the 2025-2030 period; 68% of the catchments had a net
decrease in SRI. This was followed by the 2020-2025
and 2030-2035 transition periods, with a net decrease
of 66% and 65% of catchments, respectively.

The spatial distribution of net changes in SRI was also
visually evaluated since maps of absolute SRI values
did not show any clear trend in SRI (Figure 3). The
maps of net SRI changes suggest a certain degree of
spatial clumping of catchments with increases in
SRI and with SRI decline. Hence, this may indicate
spatial autocorrelation, which needs to be tested in the
statistical analysis.

General trends in landscape composition

While landscape composition is not a part of the
analysis, it is still important to look at its general trends
to understand the general changes in the landscape
since this affects sediment retention. While initially, the
landscape was more than 30% annual crops in 2012 and
30% perennial crops in 2015, the projected maps showed
trends in land cover change which would make built-
up areas the more expansive land cover type by 2035
— covering 37% of the area (Figure 4). Built-up areas
expanded by 4,261 ha, a 35% increase. This increase
is fueled by the conversion of both annual crops and
perennial crops into built-up. Annual crops decreased
their overall coverage to 16%, a net decrease of 70%
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Figure 2. Summary of changes in SRl in the five transition periods.
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Figure 3. Spatial changes in SRI from 2010 to 2035.

or around 4,126 ha. Furthermore, the two-percentage
point net contraction of perennial crops constitutes a
6% decrease in its total area. The areas of inland water
and forest cover persisted through the prediction years
since they were not included in the model (Almarines,
2019). Finally, the area of grasslands increased to 9% of
the landscape and showed an 18% net gain of 619 ha.
All these trends show that vegetation decreased in the
modeled land cover maps and is likely the cause of the
decrease in SRI.

Changes in landscape configuration

The mean and median values of both Patch Density
(PD) and Edge Density (ED) increased during the
period (Figure 5). PD had a net increase of 257% in
mean values and a net gain of 325% in median values

from 2010 to 2030, with the highest values computed
for 2025. Similarly, ED has a 169% and 195% net gain
in mean and median values, respectively, from 2010
to 2030. The trends in PD and ED indicate that the
land cover pattern had been increasingly fragmented
through time, with patches becoming more prevalent
in the study area. Conversely, the LPI and GYRATE
metrics have exhibited an inverse trend. Land cover
changes resulted in a 50% and 63% decrease in GYRATE
mean, and median values and a 14% and 20% decrease
in LPI mean and median values from 2010 to 2035. This
denotes that size of patches in the landscape has been
decreasing as the number of patches increases.

Disjunct core area density (DCAD) is the only core area
metric used in landscape pattern analysis. The mean
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Figure 4. Landscape composition from 2010 to 2035.

DCAD of the catchments in the study area increased
by 257%, and its median values increased by 325%.
Similarly, the maximum values of the DCAD increased
from 254.78 to 764.33. Changes for each period also
revealed an increasing trend between 2010-2015, 2015-
2020, and 2025-2030. Conversely, decreasing trends
trend were observed in the 2020-2025 and 2030-2035
time periods. The trend corroborates the result of

the area-density-edge metrics, which implies a more
fragmented landscape.

Contagion-interspersion metrics computed for the
study area include the contagion index (CONTAG),
aggregation index (Al), landscape division index
(DIVISION), and splitting index (SPLIT). The CONTAG
metric showed an increase in the mean (ie., 11%
increase) and median (5% increase) values. Likewise,
the DIVISION and SPLIT metrics also increased from
2010 to 2035; the means of DIVISION and SPLIT
increased by 30% and 38%, respectively, while their
medians grew by 32% and 40%. Al did not significantly
change throughout all transition periods (i.e., change
was less than 1%). Overall, the trends in the metrics
indicate that the degree of dispersion and interspersion
of patches is increasing.

The value of COHESION from 2010 (99.73) to 2035
(99.42) only changed by less than 1%. Hence it did not
significantly change during the period, which means
that the connectivity of the patches in the area did not
significantly change.

The mean and median values of all the patch diversity
metrics increased from 2010 to 2035. Throughout the
entire period, the means of PR, PRD, SHDI, and SIDI
increased by 32%, 62%, 33%, and 32%, respectively;
their median values increased by 33%, 31%, 32%, and
24% respectively. Assessment of changes in each metric
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Figure 5. Mean and median values of fragmentation metrics from 2015 to 2035.
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for each period also revealed an increasing trend in the
mean patch diversity metric values for all transition
periods. However, the rates of change in the mean
values were decreasing. Similarly, the same trends can
be seen for the median values of the metrics, except for
the 2025-2030 transition period, where median values
of PRD and SIDI each decreased by 1%, and the 2030-
2035 transition period, where median values of PRD
decreased by 1% and SIDI and SHDI decreased by
3%. Overall, the number of patch types, richness, and
evenness increased by 2035.

Interaction of sediment retention and landscape
configuration

Multiple linear regression assessed the interaction
between the changes in sediment retention and the
changes in various landscape pattern metrics. It
was also used to measure the degree of influence
between the dependent variable (i.e., ASRI) and 68
independent variables represented by the landscape
level and class level fragmentation metrics (ie.,
APD, ALPI, AED, AGYRATE, ADCAD, ACONTAG,
ACOHESION, ADIVISION, ASPLIT, APR, APRD,
ASHDI, ASIDI, AAI, etc.). However, the correlation
between the independent variables was measured
before regression analysis. Correlation analysis of the
changes in landscape pattern metrics showed that
most were weakly correlated. Overall, only 1% of the
correlation coefficients showed a significant correlation
(i.e., coefficients greater than 0.8) between metrics. APD
and ADCAD were collinear, so APD was not used in
the regression. Similarly, the class-level metrics APD_
AC, APD_BU, APD_F, APD_GL, and APD_PC were not
included in the regression due to their collinearity with
ADCAD_AC, ADCAD_BU, ADCAD_F, ADCAD_GL,
and ADCAD_PC, respectively. The least correlation was
between APRD and AGYRATE, and APRD and ASPLIT.
The patch diversity metrics were highly correlated,
and area-edge metrics were the least correlated.

Multiple regression was used on the variables, and
an F-test was conducted on the regression model to
assess if the regression coefficients of the independent
variables were statistically distinguishable from zero.
Since the p-value of the model F-statistic (Prob > F) is
equal to 0.0000, the null hypothesis that all coefficients
are equal to zero and have a greater than 99.99%
confidence that there is a statistically discernible
connection between changes in SRI and the changes
in various landscape pattern metrics can be rejected.
However, the R-square of the model is low, at 0.2054.
This implies even though it is statistically significant,
the spatial patterns of land cover across the landscape
only explain a small percentage of variance in sediment

retention. Hence, landscape composition may play a
more considerable impact on the changes in landscape-
level ecosystem sediment retention.

Looking at the Beta estimates of the regression line,
DIVISION has the highest magnitude of influence
per unit change on SRI, followed by Al However,
this may be misleading since the maximum value for
both DIVISION, and Al is one. Meaning attaining the
highest possible value for DIVISION would increase
the SRI value by 0.26, and for Al, it would only increase
the SRI value by 0.13. However, the P-value of the said
variables indicates low statistical significance at a 95%
confidence interval. Statistically significant variables at
a minimum of 95% confidence interval are GYRATE,
LPI_PC, ED_AC, ED_F, ED_GL, and ED_PC. Four
variables have the highest t-values and the lowest
p-values: GYRATE, LPI_PC, ED_AC, and ED_GL.
These three variables are statistically significant even
at a greater than 99.9% confidence interval.

Computation of the independent variables’ variance
inflation factor (VIF) revealed that many are collinear,
with almost half having VIF >10. The collinear variables
were removed to improve the regression model, which
resulted in a regression model summarized in Table 6.
All the remaining variables have a VIF of five or less,
and about 12 variables were statistically significant at a
95% confidence interval (i.e., COHESION, ED_AC, ED_
BU, ED_F, ED_GL, ED_PC, GYRATE, GYRATE_AC,
GYRATE_F, GYRATE_PC, LPI_AC, SPLIT). Of these
variables, COHESION have the highest regression
coefficient, which indicates that for every unit increase,
COHESION would resultin a 0.07 decrease in SRI. This
is followed by SPLIT, which increases SRI by 0.01 for
every unit increase. On the other hand, GYRATE_PC
has the lowest regression coefficient of 0.00007.

A Moran’s I test of spatial autocorrelation was also
done by spatially joining the computed datasets of
SRI, landscape-level, and class-level fragmentation
metrics with their corresponding catchments. The
spatial coordinates of each catchment were used to
create a neighbors list based on catchments that share
at least one boundary using Queen’s contiguity criteria
(Florax & Rey, 1995). This resulted in 1118 non-zero
links between neighbors with a 5.4 average number
of links for each catchment; the minimum number of
links derived in the neighborhood assessment was
two, and the most connected catchment was assessed
with 14 links.

A spatial weights matrix was generated for the
dataset by assigning weights for each catchment
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Table 6. Coefficients, t values, and collinearity of variables in the revised regression model.

Standardized coefficient

Variable

t

Collinearity statistics
P>ltl

Value Std. err. Tolerance VIF
ADCAD -0.000668 0.000368 -1.81 0.070 0.205333 4.87
APRD 0.000896 0.000829 1.08 0.280 0.236922 4.22
ACOHESION -0.073431 0.030182 -2.43 0.015 0.287689 3.48
AGYRATE_F 0.000275 0.000138 2.00 0.046 0.969213 1.03
ALPI_AC -0.001917 0.000521 -3.68 0.000 0.513149 1.95
ALPI_BU -0.000186 0.000632 -0.29 0.769 0.648225 1.54
ASPLIT -0.014115 0.005653 -2.50 0.013 0.493910 2.02
AED_F -0.004968 0.001815 -2.74 0.006 0.925325 1.08
APR -0.006918 0.008969 -0.77 0.441 0.658827 1.52
AED_AC 0.001561 0.000290 5.38 0.000 0.504455 1.98
AED_PC -0.000966 0.000230 -4.21 0.000 0.532330 1.88
AGYRATE_GL 0.000018 0.000045 0.41 0.679 0.871652 1.15
AED_GL 0.002617 0.000295 8.87 0.000 0.660283 1.51
AGYRATE -0.000248 0.000074 -3.38 0.001 0.572332 1.75
ACONTAG -0.000213 0.000336 -0.63 0.527 0.662981 1.51
ASPLIT_GL 0.000000 0.000000 0.63 0.528 0.988660 1.01
ADCAD_AC 0.000231 0.000744 0.31 0.756 0.541892 1.85
AED_BU -0.001192 0.000408 -2.92 0.004 0.587441 1.70
ASPLIT_F 0.000000 0.000000 0.20 0.841 0.972300 1.03
ASPLIT_AC 0.000000 0.000000 0.13 0.895 0.993483 1.01
AGYRATE_PC 0.000072 0.000036 1.99 0.047 0.824849 1.21
AGYRATE_AC 0.000106 0.000052 2.04 0.042 0.640094 1.56
ASPLIT_BU 0.000000 0.000000 -0.05 0.959 0.995357 1.00
ADCAD_GL -0.000231 0.000218 -1.06 0.289 0.779714 1.28
ADCAD_PC -0.000745 0.000392 -1.90 0.058 0.670509 1.49
ASPLIT_PC 0.000000 0.000000 1.03 0.305 0.998990 1.00
ADCAD_BU 0.000056 0.000587 0.10 0.924 0.813139 1.23
AGYRATE_BU 0.000023 0.000065 0.35 0.727 0.740838 1.35
_cons 0.007195 0.004264 1.69 0.092 Mean VIF 1.72

Note: highlighted variables are statistically significant at a=0.05

using the generated neighbors list utilizing a row-
standardized scheme. The spatial weights matrix
was used in Moran’s I test for spatial autocorrelation
under randomization, which resulted in a p-value less
than 2.2 x 107¢. This means that the dataset exhibits a
statistically discernible level of spatial autocorrelation.
The computed Moran’s I coefficient was 0.33512,
which indicates positive spatial autocorrelation. This is
corroborated by the results of Geary's C test for spatial
autocorrelation, which showed similar outputs; the
p-value was less than 3.452x10%; the computed Geary's
C statistic was 0.54763.

Similarly, the residuals of the revised regression
model were also assessed for spatial autocorrelation

using Moran’s I test. The results showed statistically
significant autocorrelation (p-value = 3.92 x 107%) in
the residuals of the revised regression model, with
Moran’s I coefficient equal to 0.31435. A studentized
Breusch-Pagan test of the model seems to confirm this,
with a p-value of 2.338 x 10® and a coefficient of 89.541,
which implies heteroskedastic model residuals.

Furthermore, Lagrange Multiplier (LM) diagnostics
determined the type of spatial dependence present in
the revised regression model. These include the simple
LM test for error dependence (LMerr) and the simple
LM test for a missing spatially lagged dependent
variable (Lmlag). Lmerr and Lmlag showed statistically
significant spatial dependence with p-values less
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than 6.509 x 10"® and 2.7 x 10%, respectively. Hence,
additional LM diagnostics were applied to assess
further the type of spatial dependence that would best
describe the residuals of the revised regression model.
The additional diagnostics tools used were the robust
LM test for error dependence in the possible presence
of a missing lagged dependent variable (RLMerr), the
robust LM test for a missing spatially lagged dependent
variable in the possible presence of an error dependent
variable (RLMlag); and a portmanteau test (SARMA)
which combines both LMerr and RLMlag. RLMerr
was the only diagnostic with a statistically significant
p-value; thus, the spatial error model was selected as
most appropriate for the dataset.

The variables used in the revised regression model were
fitted in aspatial error model, and a z-test was conducted
to assess if the coefficients of the independent variables
were statistically distinguishable from zero. Since the
p-value of the model is less than 2.1427 x 10"%, we can
reject the null hypothesis that all coefficients are equal
to zero and have a greater than 99.9999% confidence
that there is a statistically discernible connection or
relationship between changes in SRI and the changes
in various landscape pattern metrics.

Furthermore, eight variables (i.e., ED_PC, ED_GL,
DCAD_AC, ED_BU, GYRATE PC, GYRATE_AC,
DCAD_GL, and DCAD_PC) were shown to have a
statistically significant impact on SRI at a minimum
of 95% confidence interval (Table 7). Of these, ED_GL
have the highest z-value and the lowest p-value, which
indicates statistical significance even at a greater than
99.9999% confidence interval. Looking at the estimated
coefficients of the variables, DCAD_AC have the
highest magnitude of influence per unit change on SRI
— a 0.0242 increase in SRI per unit change in DCAD_
AC. This was followed by ED_GL, whose per unit
increase also increased SRI by 0.0102. The variables
ED_BU, DCAD_GL, and DCAD_PC all have negative
coefficients, which indicate a decrease in SRI for every
unit increase in the said variables.

Implications and comparison to similar studies

The results of the statistical analysis show that
increasing the patch size and ED of built-up areas will
result in a decrease in SRI. Conversely, increasing the
ED of perennial crops and their average patch size in
conjunction with a decreased core area will increase SRI
in the landscape. Similarly, decreasing the core area and
increasing the ED of grasslands is expected to increase
SRI in the study area. Furthermore, increasing the core
area of annual crops while increasing its average patch
sizes is expected to increase SRI in the landscape. These

metrics imply that to improve sediment retention in
the landscape, large and irregular or elongated patches
might be a better configuration for perennial crops,
irregular or elongated patches for grasslands, while
small and compact-shaped patches work best for built-
up areas, and large, and compact-shaped patches are
optimal for annual crops.

Areview article on ameta-analysis of 121 similar studies
shows that landscape pattern or landscape complexity
has a 29% cumulative mean effect size on water quality-
related ecosystem services — an aggregation of nutrient
retention, sediment retention, and other related
ecosystem services (Duarte ef al., 2018). The strongest
positive effect was observed for the percentage of non-
crop and natural areas, which are composition metrics.
For landscape configuration, landscape connectivity
positively influenced water quality, while landscape
heterogeneity exhibited a significant negative effect.
However, this only investigated landscape-level
metrics because this had been more prevalent. Hence it
is difficult to compare results since class-level metrics
were the most influential for the MMFR catchments.

Individual studies on class-level metrics seem to come
to different conclusions on landscape configuration
and sediment retention. These were also less common;
hence a consensus may not have been determined yet.
Stepwise regression determined a negative relationship
between the aggregation of grasslands and a positive
relationship between farmlands' aggregation and ED
to sediment retention in the Liaohe River Reserve,
China (Xia et al., 2021). Similarly, larger patch sizes,
higher aggregation, higher ED, and more compact-
shaped agricultural areas result in lower sediment
yield in the Chenyulan Watershed, Taiwan (Chiang ef
al., 2019). Both appeared to corroborate this paper’s
findings. Conversely, in the Blue Nile Basin, the mean
patch size and LPI of farmlands and settlements have
a negative correlation, while the patch size and LPI
of grasslands and the number of farmland patches
positively correlated with the decrease in sediment
export (Yohannes et al., 2020). Although the patch
size and settlement results aligned with the findings
in the Blue Nile Basin, its farmland correlations were
contrary. Furthermore, grassland results were also
similar but were considered statistically insignificant.
Only one comparable journal article was performed
in the Philippines, a study on sediment yield in the
Calumpang Watershed, Batangas (Boongaling et al.,
2018). Here, a higher number of patches, a smaller
LPI, and less aggregated patches of agriculture were
assessed to result in lower sediment yield. For built-up
areas, higher aggregation and compact-shaped patches
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Table 7. Coefficients, asymptotic standard error, and z-values of variables used in the spatial error model.

Variable Coefficient Std. error z value Pr >lzl
ADCAD -0.0034483 0.0047016 -0.7334000 0.4632967
APRD -0.0003846 0.0084534 -0.0455000 0.9637111
ACOHESION -0.1364500 0.1148500 -1.1881000 0.2348087
AGYRATE_F 0.0002321 0.0002167 1.0713000 0.2840231
ALPI_AC 0.0012178 0.0011926 1.0211000 0.3072279
ALPI_BU 0.0016610 0.0014344 1.1580000 0.2468798
ASPLIT -0.0274340 0.0154650 -1.7739000 0.0760822
AED_F -0.0031535 0.0031666 -0.9959000 0.3193079
APR 0.0019165 0.0213510 0.0898000 0.9284780
AED_AC 0.0016727 0.0013583 1.2314000 0.2181626
AED_PC 0.0024504 0.0010917 2.2446000 0.0247951
AGYRATE_GL -0.0000972 0.0001008 -0.9640000 0.3350305
AED_GL 0.0102190 0.0012989 7.8673000 0.0000000
AGYRATE_MN -0.0002334 0.0001868 -1.2494000 0.2115022
ACONTAG 0.0000860 0.0008063 0.1066000 0.9150799
ASPLIT_GL 0.0000000 0.0000000 -0.2744000 0.7837564
ADCAD_AC 0.0242850 0.0089459 2.7146000 0.0066349
AED_BU -0.0038704 0.0012723 -3.0419000 0.0023506
ASPLIT_F 0.0000000 0.0000000 0.4304000 0.6668757
ASPLIT_AC 0.0000000 0.0000000 0.5406000 0.5887497
AGYRATE_PC 0.0002235 0.0000829 2.6974000 0.0069876
AGYRATE_AC 0.0002676 0.0001014 2.6392000 0.0083113
ASPLIT_BU 0.0000000 0.0000000 0.0755000 0.9398500
ADCAD_GL -0.0064074 0.0018346 -3.4926000 0.0004784
ADCAD_PC -0.0067937 0.0019629 -3.4610000 0.0005381
ASPLIT_PC 0.0000000 0.0000000 0.1301000 0.8964925
ADCAD_BU -0.0034762 0.0025619 -1.3569000 0.1748208
AGYRATE_BU 0.0001023 0.0001468 0.6972000 0.4856620
(Intercept) 0.0007395 0.0397530 0.0186000 0.9851594

Note: highlighted variables are statistically significant at a=0.05

were deemed to result in lower sediment yield. Their
results for built-up areas seem to agree with the results
of this paper, but their results for agriculture imply the
inverse.

The various methods and metrics used in each study
may have influenced the differences in findings. For
instance, the initial regression model in this paper had
distinct statistically significant variables compared to
the final spatial error model, with some even having
inverse beta estimates compared to their initial
computation. Furthermore, differences in scale may
also contribute to the variations. This is because a
lot of ecological processes seem to be sensitive to the

scaling of dependent variables, including thematic
scale, spatial grain, and spatial extent, among others
(Mateo Sanchez et al., 2014; Chambers et al., 2016; Bai et
al., 2020; Fu et al., 2021; Li et al., 2022;). Since most other
studies were done at a much larger and coarser scale
— usually 30 m resolution at a river basin or regional
scale compared to 5 m resolution at a catchment scale
— this may result in variations in results. Thematic
resolution or aggregation of classes also varies in the
studies. Hence, this highlights the current limitations of
landscape pattern assessment, and this area of research
needs further development as new ways of assessing
landscape patterns emerge (Gustafson, 2019).
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CONCLUSION AND RECOMMENDATIONS

Landscape configuration has been found to have a
statistically significant influence on the catchment-
level sediment retention of the study area. Although
results still need to be verified on the field or by
duplicate studies, this holds potential for landscape
and watershed management. The spatial error model
implies that, to a certain degree, the spatial design and
configuration of land use and land cover may also be
utilized to improve sediment retention and mitigate
soil erosion.

However, even though eight landscape pattern metrics
have statistically significant relationships with SRI, the
proportion of changes in SRI that can be attributed to the
landscape pattern metrics used in the study is less than
5%. It is important to note that landscape composition
tends to be the most important indicator of sediment
retention for landscape-level interactions. However,
at least one study seems to have contradictory results,
with landscape configuration being more important.
This is a limitation of the study since it looks at the
impacts of landscape configuration in isolation of
landscape composition. Further investigation should
be done by incorporating landscape composition
in the statistical analysis to determine its degree of
influence on sediment retention vis-a-vis landscape
configuration.

Another limitation of the study is that it analyzed a
set scale — of 5 m resolution at a catchment scale. A
potential area of research missing in this study is the
integration of statistical scale screening, selection,
or optimization of the landscape pattern metrics. A
multiscale analysis optimizes the scale of each variable
in the statistical model. This type of multiscale analysis
reduces the impact of scale on dependent variables
and could potentially improve the comparability of
such studies. Lastly, hypothetical land cover pattern
generation methods should be explored to assess
ecosystem service and landscape pattern relation over
a wider range of hypothetical landscape compositions
and configurations. Additional studies into this field
are warranted, including similar studies on other
spatially sensitive ecosystem services. A meaningful
understanding of their interaction could be valuable
in improving existing measures and developing novel
methods and guidelines for soil and water conservation
or land use and watershed management planning in
the Philippines.
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Annex 1. Equations and descriptions of the landscape pattern metrics used.

Landscape metric

Equation

Description (McGarigal, 2015)

Patch density

Edge density

Mean radius of gyration

Largest patch index

Disjunct core area density

Contagion index

Aggrega-tion index

Landscape division index

Splitting index

Patch cohesion index

Patch richness

Patch richness density

Shannon’s diversity index

Simpson’s diversity index

N
PD = n (10,000)(100)

E
ED = 1 (10,000)

N Z 1hl]
GYRATE MN = =7=* 2
N
ey =) (100
121 1n r]
peap = =12 (10,000 (100)

z‘@lm:l[w‘) <Zk’"fi1kyi ﬂ [ln(m( m ;yu)]

CONTAG =1+ 2In(m)
m
A= Z(#)P (100)
i=1 gij

i=1j=1
mon
ij
SPLIT = 1—;;(7)
COHES Z?HZZ lpl} }
k 1pL]\/aT}
PR=m

m
PRD =" (10,000)(100)

SHDI = — Z(P" « In(P)
i=1

m
SIDI =1— Z p?
i=1

1 -1
1—\/21 (100)

It is the number of patches of a patch
type divided by the total landscape
area.

Is the sum of the lengths (m) of all edge
segments divided by the landscape
area (m2)

This is a measure of patch extent; thus,
it is affected by both patch size and
patch compaction.

A simple measure of dominance, the
index quantifies the percent of the
total landscape area comprised by the
largest patch.

This expresses the number of disjunct
core areas on a per unit area basis.

It is affected by the dispersion and
interspersion of patch types. Hence,

if a single class occupies a significant
percentage of the landscape, contagion
is high.

It is calculated from an adjacency
matrix at the class level which is then
aggregated at the landscape level.

It is the cumulative patch area
distribution and probability that two
random landscape pixels are not in the
same patch.

Based on the cumulative patch area
distribution, it is interpreted as the
effective mesh number

This index at the class level measures
the physical connectedness of the
corresponding patch type.

It is the number of different patch types
present within the landscape boundary.

This standardizes richness to a per
area basis that facilitates comparison
among landscapes.

A measure of diversity applied to
landscapes. It is more sensitive to rare
patch types than Simpson.

More intuitive than Shannon, it denotes
the probability that 2 pixels would be
different patch types.






