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ABSTRACT.   Sediment retention is among the most important ecosystem services impacted by anthropogenic drivers 
of land cover change. However, there have been few efforts to gauge the impacts of land cover configuration on 
the total ecosystem sediment retention in a landscape. The study aims to do so by computing changes in landscape 
pattern metrics of catchments draining from the Mt. Makiling Forest Reserve (MMFR) using FRAGSTATS. Then, 
changes in sediment retention index (SRI) were modeled with the InVEST sediment delivery ratio (SDR) model. 
Statistical analysis of 64 landscape pattern metrics vis-à-vis SRI using a spatial error model showed eight class-level 
metrics statistically significant at α = 0.05. These were the edge density (ED) of built-up areas (β = -0.0039), perennial 
crops (β = 0.0025), and grasslands (β = 0.0102); the disjunct core area density (DCAD) annual crops (β = 0.0243), 
grasslands (β = -0.0064), perennial crops (β = -0.0068); and the mean radius of gyration (GYRATE) of perennial crops 
(β = 0.0002) and annual crops (β = 0.0003). However, despite this statistical significance, less than 5% of changes 
in SRI can be attributed to landscape configuration. This indicates that while landscape configuration influences 
sediment retention, landscape composition or land cover area remains an important predictor of sediment retention.
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INTRODUCTION

Human-induced land use and land cover dynamics 
often result in considerable risks to ecology and 
human well-being (Adepoju et al., 2019; Moanga, 
2020). Such changes could disrupt landscape patterns, 
interfere with ecological processes, compromise 
the landscape’s functional integrity, and decrease 
ecosystem services (Hasan et al., 2020; Martello et 
al., 2023). Thus, effective landscape management is 
contingent on understanding the linkages between 
landscape patterns and ecosystem services (Duarte et 
al., 2018; Qiu et al., 2018; Saidi & Spray, 2018; Loc et al., 
2020; Dong et al., 2022).

Landscape patterns depict the various aspects of 
spatiotemporal heterogeneity of an inherently complex 
landscape and are usually quantified using algorithms 
called landscape pattern metrics (McGarigal, 2012; 
Remmel & Mitchell, 2021).  These metrics comprise 
composition and configuration (Abdolalizadeh et al., 
2019; Yohannes et al., 2020). Landscape composition is 
non-spatial and pertains to the number and proportion 
of land cover classes, while landscape configuration 
describes the spatial arrangement, position, and 
orientation of land cover, including the shape and 
size of patches (Hou & Estoque, 2020; Liu et al., 2020; 
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Redhead et al., 2020; Fu et al., 2021).  These metrics 
may also be classified according to their use case. 
Structural metrics, for example, quantify the physical 
landscape structure without reference to a specific 
ecological process of species, while functional metrics 
do so in a particular context and thus, need additional 
parametrization (McGarigal, 2012; Gustafson, 2019; ).

It is well-established that landscape patterns influence 
ecosystem services, with fragmentation being the 
most researched factor and known to cause adverse 
impacts on the supply of ecosystem services (Fu et al., 
2013;  Mitchell et al., 2015; Hasan et al., 2020). A meta-
analysis of 121 journal articles showed that different 
aspects of landscape patterns influence water quality, 
disease control, pest control, pollination, and aesthetic 
ecosystem services  (Duarte et al., 2018). Similarly, the 
structure of urban green spaces seems to affect urban 
microclimate and promises to improve the mitigation 
of urban heat islands (Du et al., 2019; Hou & Estoque, 
2020; Li et al., 2021; Gao et al., 2022). Biodiversity and 
habitat quality are also affected by landscape patterns 
(Zhang et al., 2022). Interestingly, some studies also 
aim to relate landscape patterns as crop and ecological 
resilience indicators to climate change (Cushman & 
McGarigal, 2019; Honkaniemi et al., 2020; Redhead et 
al., 2020).

While there are numerous studies on the influence of 
landscape patterns on soil erosion and sediment export, 
most of these tend to focus on landscape composition 
(Srichaichana et al., 2019; Bouguerra et al., 2020; Hasan 
et al., 2020; Negese, 2021; Li et al., 2022a; Li et al., 2022b). 
Comparatively, the impact of landscape configuration 
on the sediment retention services of ecosystems 
has been less extensively examined–especially in 
the Philippine context (Duarte et al., 2018). Research 
studies of this nature, however, do not always measure 
the linkages between landscape configuration and 
sediment retention, but those that do, demonstrate 
the need to quantify such interactions (Ahmadi et al., 
2018; Yohannes et al., 2020; Xia et al., 2021; Martello 
et al., 2023). Particularly, it is important to identify 
what variables or landscape pattern metrics would 
significantly influence the magnitude of changes in 
sediment retention. Hence, the study aimed to assess 
how changes in landscape configuration affect the 
degree of ecosystem sediment retention at a catchment 
level through the quantification and statistical analysis 
of landscape-level and class-level landscape pattern 
metrics and the sediment retention index.

METHODOLOGY

Study area
The study was modeled in the watersheds along the 
southern portion of Laguna de Bay which intersects 
with the MMFR or the Mt. Makiling Forest Reserve. 
MMFR is a protected area along the southwestern part 
of the Island of Luzon, about 60 km southeast of Metro 
Manila, and was designated as an ASEAN Heritage 
Park in 2013 (Castillo et al., 2021). The watersheds it 
intersects play a significant role with local communities 
and ecosystems within its catchments through the 
provisioning of ecosystem services (Paelmo et al., 2015; 
Clanor et al., 2016; Spiegelberg et al., 2017). It is also an 
important reservoir of biological resources, covering 
a variety of ecosystems, including lowland evergreen 
rainforests and lower montane forests which have 
yielded high floristic, faunal, fungal, and microbial 
diversity (Nacua et al., 2018; Arguelles, 2019; Gonzalez 
et al., 2020; Magcale-Macandog et al., 2022).

The study looked at 15 watersheds intersecting with 
the MMFR ranging from 88 ha to almost 20,000 ha 
draining into the Laguna de Bay (Figure 1). These 
were delineated from an Interferometric Synthetic 
Aperture Radar (IfSAR) derived 5 m Digital Terrain 
Model (DTM) provided by the National Mapping and 
Resource Information Authority (NAMRIA) in 2016. 
ArcHydro was used in delineating and subdividing the 
watersheds into 207 individual catchments. This used 
an eight-direction flow model (D8) and a 40,000-pixel 
threshold value equivalent to 100 ha or 1 km2. Most 
of these catchments (60%) are at most 2 km², and 37% 
are less than 1 km². The average catchment perimeter 
is 10.11 km, with an average basin length of 3.42 km.

Landscape pattern metrics
The program FRAGSTATS was used to assess and 
quantify landscape pattern metrics. It provides detailed 
statistical information on various landscape metrics 
at different scale levels. However, for this study, 14 
landscape pattern metrics were used for landscape 
pattern analysis of each catchment in the study area 
(Table 1). All 14 metrics are structural metrics that 
measure landscape configuration. The details of each 
landscape pattern metric used in the study are described 
in Annex 1. These can be grouped according to their 
utility, as many tend to measure similar attributes of 
landscape patterns. As the name suggests, area-edge 
metrics describe the size and density of patches and the 
extent of their edge in the landscape; they are among 
the most fundamental metrics in landscape ecology 
(McGarigal, 2015). Core area metrics are similar to 
area-edge metrics but also account for edge effects; 



contagion-interspersion metrics describe the level of 
land cover fragmentation and aggregation (McGarigal, 
2012). Lastly, connectivity metrics look at how well-
linked and enmeshed each patch type of the landscape 
mosaic is, while diversity metrics describe the degree 
of heterogeneity in the landscape (Duarte et al., 2018).

Table 1. List of landscape fragmentation metrics used in the study.

Type of metric Landscape metric Abbreviation

Area-edge metrics Patch density PD
Edge density ED
Mean radius of gyration GYRATE
Largest patch index LPI

Core area metrics Disjunct core area density DCAD

Contagion-
Interspersion 
metrics

Contagion index CONTAG
Aggregation index AI
Landscape division index DIV
Splitting index SPLIT

Connectivity metrics Patch cohesion index COHES

Diversity metrics Patch richness PR
Patch richness density PRD
Shannon’s diversity index SHDI
Simpson’s diversity index SDI

Aside from the landscape-level metrics, class-level 
metrics were also computed. These are like landscape-
level metrics but disaggregated by land cover types. 
Nine landscape pattern metrics were computed for 
each of the six land cover classes, adding to 45 class-
level metrics (Table 2).

Sediment retention modeling
The SDR Model of the InVEST software version 3.3.3. 
was used to quantify and spatially visualize sediment 
retention under the various land cover configurations. 
InVEST is a geospatial modeling platform that is one of 
the most widely used for modeling ecosystem services 
in historical and future contexts (Agudelo et al., 2020; 
Gomes et al., 2021; Meraj et al., 2022; Nedkov et al., 
2022).

The SDR model estimates the sediment retention 
service of an ecosystem by comparing the avoided 
soil loss of a land cover type to bare soil (Hamel et al., 
2015; Sharp et al., 2018). This is operationalized in the 
model through the SRI (Equation 1), which looks at the 
soil loss of a pixel given a particular rainfall erosivity, 
soil erodibility, and slope length, and gauges the effect 
of the vegetative cover and conservation practices by 
weighing it against its respective sediment delivery 
ratio (Borselli et al., 2008; Hamel et al., 2017; Sharp et 
al., 2018). This model is particularly practical since it 
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Figure 1. Location map of the study area.



(Equation 1)

Where:	
Ri = rainfall erosivity (MJ·mm(ha·hr)−1)
Ki = soil erodibility (ton·ha·hr(MJ·ha·mm)−1)
Si = slope factor computed as 10.8·sin(θ) + 0.03 	
      where θ<9% or 16.8·sin(θ) − 0.50, where θ ≥ 9%
A(i-in) = contributing area (m2) at the inlet of a grid cell
D = grid cell linear dimension (m)
xi = |sin αi| + |cos αi| where αi is the aspect direction    
        for grid cell i
m = RUSLE length exponent factor
Ci = crop-management factor
Pi = support practice factor
SDRi = sediment delivery ratio

The rainfall erosivity factor (R) was computed using 
an equation developed by Lee and Lin (2015) which 
relates annual rainfall erosivity in MJ·mm(ha·hr)−1 to 
annual average precipitation (Equation 2). This was 
selected since it was tested to have good agreement 
with observation data from 10-year rainfall data in 
55 stations across Taiwan with over 16,000 recorded 
storm events and annual precipitations ranging 
from 1,300 mm to 4,000 mm. To ensure sufficient 
coverage of the study area for interpolation, Philippine 
Atmospheric Geophysical and Astronomical Services 
Administration (PAGASA) climate stations within a 
50-km buffer from the centroid of the study area were 

identified, and climatic data for each weather station 
were collected from 1980 to 2010 to compute for the 
climatological normals of each station and obtain the 
average annual precipitation data needed to compute 
for rainfall erosivity. Annual precipitation of nearby 
stations was well within the range of values from 
which Equation 2 was developed and tested. An R 
factor raster was generated by interpolating rainfall 
erosivity values from the PAGASA climate stations 
using empirical Bayesian kriging with a thin plate 
spline semivariogram (Gupta et al., 2017; Javari, 2017; 
Yang & Xing, 2021).

(Equation 2)						    

	                    	

Where:	  P = average annual precipitation (mm ha−1 yr−1)

Soil erodibility (K) (Table 3) was computed for each 
pixel by utilizing a digital soil map from the Bureau 
of Soil and Water Management and assigning soil 
erodibility values of each soil type based on its textural 
class, and organic matter content (OMC) converted to 
SI metric units or t∙ha∙hr (ha∙MJ∙mm)–1  (Foster et al., 
1981; Schwab et al., 1981; Parveen & Kumar, 2012). This 
was used since the values were empirically calculated 
based on the soil erodibility nomograph (Wischmeier 
et al., 1971) and equation (Wischmeier & Meyer, 1973) 
which is the most widely used method to estimate 
K-factor and had also been adapted for RUSLE2 
(Dabney et al., 2012; Auerswald et al., 2014; Corral-
Pazos-de-Provens et al., 2022).
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Table 2. Class-level fragmentation metric codes for each land cover type.

Metric
Class-level fragmentation metric code

Annual crop Built-up Forest Grassland Perennial crop

PD PD_AC PD_BU PD_F PD_GL PD_PC

LPI LPI_AC LPI_BU LPI_F LPI_GL LPI_PC

ED ED_AC ED_BU ED_F ED_GL ED_PC

GYRATE GYRATE_AC GYRATE_BU GYRATE_F GYRATE_GL GYRATE_PC

DCAD DCAD_AC DCAD_BU DCAD_F DCAD_GL DCAD_PC

COHES COHES_AC COHES_BU COHES_F COHES_GL COHES_PC

DIV DIV_AC DIV_BU DIV_F DIV_GL DIV_PC

SPLIT SPLIT_AC SPLIT_BU SPLIT_F SPLIT_GL SPLIT_PC

AI AI_AC AI_BU AI_F AI_GL AI_PC



Table 3. K-factor values converted to t·ha·hr (ha·MJ·mm)–1 based on 
soil textural class and OMC.

Soil texture Average OMC OMC < 2% OMC > 2%

Clay 0.02897 0.03161 0.02766
Clay loam 0.03951 0.04346 0.03688
Coarse sandy 
loam

0.00922 0.00922 0.00922

Fine sand 0.01054 0.01185 0.00790
Fine sandy 
loam

0.02371 0.02897 0.02239

Heavy clay 0.02239 0.02502 0.01976
Loam 0.03951 0.04478 0.03424
Loamy fine 
sand

0.01449 0.01976 0.01185

Loamy sand 0.00527 0.00659 0.00527
Loamy, very 
fine sand

0.05136 0.05795 0.03293

Sand 0.00263 0.00395 0.00132
Sandy clay 
loam

0.02634 0.02634 0.02634

Sandy loam 0.01712 0.01844 0.01580
Silt loam 0.05005 0.05400 0.04873
Silty clay 0.03424 0.03556 0.03424
Silty clay loam 0.04214 0.04610 0.03951
Very fine sand 0.05663 0.06058 0.04873
Very fine 
sandy loam

0.04610 0.05400 0.04346

Sources: (Foster et al., 1981; Schwab et al., 1981; Parveen & Kumar, 2012)

Lastly, C factor values were based on two sources, 
David (1988) and Benavidez et al. (2018). The study uses 
a land cover dataset which includes a combination of 
existing and modeled land cover maps from Almarines 
(2019). Maps for 2010 and 2015 were sourced from 
NAMRIA. Conversely, the land cover maps for 2020, 
2025, 2030, and 2035 were modeled using a hybrid 
Markov chain-multilayer perceptron neural network 
(MC-MPNN) model with an accuracy rate of 77.6%. 
Since the model accuracy is on the lower end of 
acceptability, the study uses the land cover dataset to 
determine general trends of land cover patterns in the 
landscape for SRI computation and statistical analysis. 
Hence, it also avoids using the dataset to specify likely 
areas of projected land conversion and inferring the 
potential impacts of these projected changes because 
this would require a comprehensive breakdown of 
the prerequisite stages of land cover projection. These 
stages include filtering and grouping of historical land 
cover processes, generation of transition probability 
matrix, identification of type and influence of driver 
variables used in each transition submodel, and 

generation of transition probability maps; all of which 
are not within the scope of the study.

All the spatial inputs for the SDR model were converted 
to 5-m resolution raster grids. Hence, the resulting 
model outputs also have a 5-m resolution. The 
summary of all the input data used for SDR modeling 
is shown in Table 4.

Table 4. Data requirements and data sources utilized for the SDR 
model.

Input data Source

Digital terrain model IfSAR-derived DTM from 
NAMRIA (2016)

Rainfall erosivity
 

Climatological data from 
PAGASA climate stations 
(1980–2010)
R values computed using 
Equation 1 (Lee & Lin, 2015)

Soil erodibility Soil maps from BSWM
Soil erodibility values from 
Schwab et al. (1981) 

Land cover 2010 and 2015 land cover 
maps from NAMRIA
Projected land cover maps 
were from an MC-MPNN 
(Almarines, 2019) 

Watershed boundary Delineated from DTM using 
ArcHydro

C and P factors  Benavidez et al., 2018; David, 
1988

Statistical analysis
Multiple regression was used to assess the relationship 
between SRI and landscape pattern metrics – landscape-
level and class-level fragmentation metrics. Multiple 
regression typically follows the formula:

(Equation 3)

		
Where:	

Y = predicted value of the dependent variable
X = predictor or independent variables
β□ = beta coefficients

Once a regression model was developed, each 
independent variable's variance inflation factor (VIF) 
was computed (Equation 4). This allows the detection 
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of multicollinearity in the regression model, which 
indicates a correlation between independent variables 
in the model and, thus, could negatively impact the 
regression outputs (Miles, 2014). Independent variables 
with high multicollinearity were removed from the 
revised regression model (Craney & Surles, 2002).

(Equation 4)

Where:	
VIFi  = variance inflation factor for independent  
           variable i
Ri

2 = computed R² for independent variable i

Spatial autocorrelation was also measured for both the 
dataset and the revised regression model. The spatial 
correlation of a variable with itself through space 
measures how distance influences the variable; this 
quantifies the presence of systematic spatial variation 
through similarity and clustering of nearby objects 
(Dubin, 2003). This is important since spatial patterns 
may provide insights into underlying factors affecting 
ecological processes (Lichstein et al., 2002). In addition, 
a review of a decade of research shows that ecological 
regression models which do not incorporate spatial 
autocorrelation tend to misestimate coefficients by 25% 
(Dormann, 2007). To assess spatial autocorrelation, 
Moran's I test for global spatial autocorrelation was 
used (Equation 5). It is based on cross-products of 
the deviations from the mean and is calculated for 
observations on a variable at two locations across links 
(Getis, 2010).

(Equation 5)

			 
Where:	

I = Moran’s I
xi = predictor or independent variables
wij = elements of the weight matrix at locations i 
        and j
S0 = s the sum of the weight matrix elements equal  
        to∑i∑jwij 

Furthermore, Geary’s C statistic (Equation 6) was 
computed to measure the heteroskedasticity of the 
model residuals based on the deviations in responses 

of each observation with one another (Geary, 1954). 
Its value is expected to be 1 without autocorrelation 
regardless of the specified weight matrix (Gunaratna 
et al., 2013).

(Equation 6)

		
Where:	

C = Geary’s C statistic
xi = predictor or independent variables
wij = elements of the weight matrix at locations i  
        and j
S0 = s the sum of the elements of the weight matrix 
        equal to ∑i∑jwij 

If spatial autocorrelation is significant, a spatial 
regression model will be used. In this case, the spatial 
error model was used to analyze spatial autocorrelation 
in the model residuals. It incorporates spatial effects 
through error terms in the model (Equation 7).

(Equation 7)

	
Where:	

y = predicted value of the dependent variable
x = predictor or independent variables
β = beta coefficient
λ = spatial error coefficient
ξ = vector of uncorrelated error terms
Wε = vector of error terms, spatially weighted 
          using the weights matrix (W)

RESULTS AND DISCUSSION

Changes in sediment retention
The changes in land cover in the landscape led 
to changes in the sediment retention index of the 
catchments in the study area. The InVEST SDR model 
was used to estimate the SRI of the catchments and 
simulated the degree of spatial variation in SRI given 
the land cover for 2010, 2015, 2020, 2025, 2030, and 2035. 
The univariate statistics (e.g., mean, median, standard 
deviation, sample variance, kurtosis, skewness, range) 
of the catchment-level sediment retention index are 
listed in Table 5.
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Table 5. Univariate statistics of the modeled catchment sediment 
retention index

Statistic
Sediment retention index

2010 2015 2020 2025 2030 2035

Mean 0.9914 0.9487 0.9541 0.9516 0.9486 0.9468

Median 0.5439 0.4390 0.4315 0.4298 0.4299 0.4298

Standard 
deviation

1.2057 1.1716 1.1800 1.1777 1.1723 1.1701

Sample 
variance

1.4537 1.3726 1.3924 1.3869 1.3743 1.3691

Kurtosis 3.9071 4.4478 4.4907 4.5435 4.6032 4.6177

Skewness 1.8181 1.9040 1.9177 1.9241 1.9238 1.9246

Range 7.0746 7.0819 7.0901 7.0939 7.1273 7.1250

The temporal changes in univariate statistics indicate 
that the SRI in the landscape decreased from 2010 
to 2035. Both the mean and median values showed 
a decreasing trend. In 2010, the mean SRI of the 
catchments was 0.99 and had a median value of 0.54; 
by 2035, this changed to 0.94 and 0.43, respectively. 
This decreasing trend is evident for all the transition 
periods except for 2015–2020, where the mean SRI had 
increased. Moreover, the highly positive skewed SRI 
data have a growing trend in skewness. This suggests 
that more catchments have shifted to lower SRI classes. 
Likewise, kurtosis follows a similar course – becoming 
increasingly leptokurtic. Thus, it implies that the 
combined weight of the tails in the SRI dataset (i.e., 
lower SRI values) has increased relative to the rest of the 
SRI distribution. Catchment-level net change analysis 
of the dataset presents a comparable assessment of 
the temporal shifts in SRI. The frequency distribution 
of the percent change in SRI of each catchment for all 

transition periods is summarized in Figure 2. The 2015-
2020 period had the greatest net increases in SRI, with 
58% of catchments gaining SRI. This period was the 
only time when more catchments had a net gain in SRI 
compared to the aggregate number of catchments with 
either no change or a net loss. The rest of the transition 
periods are characterized by a predominant net loss in 
SRI. The highest number of net losses was observed in 
the 2025-2030 period; 68% of the catchments had a net 
decrease in SRI. This was followed by the 2020-2025 
and 2030-2035 transition periods, with a net decrease 
of 66% and 65% of catchments, respectively.
 
The spatial distribution of net changes in SRI was also 
visually evaluated since maps of absolute SRI values 
did not show any clear trend in SRI (Figure 3). The 
maps of net SRI changes suggest a certain degree of 
spatial clumping of catchments with increases in 
SRI and with SRI decline. Hence, this may indicate 
spatial autocorrelation, which needs to be tested in the 
statistical analysis.

General trends in landscape composition
While landscape composition is not a part of the 
analysis, it is still important to look at its general trends 
to understand the general changes in the landscape 
since this affects sediment retention. While initially, the 
landscape was more than 30% annual crops in 2012 and 
30% perennial crops in 2015, the projected maps showed 
trends in land cover change which would make built-
up areas the more expansive land cover type by 2035 
– covering 37% of the area (Figure 4). Built-up areas 
expanded by 4,261 ha, a 35% increase. This increase 
is fueled by the conversion of both annual crops and 
perennial crops into built-up. Annual crops decreased 
their overall coverage to 16%, a net decrease of 70% 
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Figure 2. Summary of changes in SRI in the five transition periods.



or around 4,126 ha. Furthermore, the two-percentage 
point net contraction of perennial crops constitutes a 
6% decrease in its total area. The areas of inland water 
and forest cover persisted through the prediction years 
since they were not included in the model (Almarines, 
2019). Finally, the area of grasslands increased to 9% of 
the landscape and showed an 18% net gain of 619 ha. 
All these trends show that vegetation decreased in the 
modeled land cover maps and is likely the cause of the 
decrease in SRI.

Changes in landscape configuration
The mean and median values of both Patch Density 
(PD) and Edge Density (ED) increased during the 
period (Figure 5). PD had a net increase of 257% in 
mean values and a net gain of 325% in median values 

from 2010 to 2030, with the highest values computed 
for 2025. Similarly, ED has a 169% and 195% net gain 
in mean and median values, respectively, from 2010 
to 2030. The trends in PD and ED indicate that the 
land cover pattern had been increasingly fragmented 
through time, with patches becoming more prevalent 
in the study area. Conversely, the LPI and GYRATE 
metrics have exhibited an inverse trend. Land cover 
changes resulted in a 50% and 63% decrease in GYRATE 
mean, and median values and a 14% and 20% decrease 
in LPI mean and median values from 2010 to 2035. This 
denotes that size of patches in the landscape has been 
decreasing as the number of patches increases.

Disjunct core area density (DCAD) is the only core area 
metric used in landscape pattern analysis. The mean 
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Figure 3. Spatial changes in SRI from 2010 to 2035.



DCAD of the catchments in the study area increased 
by 257%, and its median values increased by 325%. 
Similarly, the maximum values of the DCAD increased 
from 254.78 to 764.33. Changes for each period also 
revealed an increasing trend between 2010–2015, 2015–
2020, and 2025–2030. Conversely, decreasing trends 
trend were observed in the 2020–2025 and 2030–2035 
time periods. The trend corroborates the result of 

the area-density-edge metrics, which implies a more 
fragmented landscape.

Contagion-interspersion metrics computed for the 
study area include the contagion index (CONTAG), 
aggregation index (AI), landscape division index 
(DIVISION), and splitting index (SPLIT). The CONTAG 
metric showed an increase in the mean (i.e., 11% 
increase) and median (5% increase) values. Likewise, 
the DIVISION and SPLIT metrics also increased from 
2010 to 2035; the means of DIVISION and SPLIT 
increased by 30% and 38%, respectively, while their 
medians grew by 32% and 40%. AI did not significantly 
change throughout all transition periods (i.e., change 
was less than 1%). Overall, the trends in the metrics 
indicate that the degree of dispersion and interspersion 
of patches is increasing.

The value of COHESION from 2010 (99.73) to 2035 
(99.42) only changed by less than 1%. Hence it did not 
significantly change during the period, which means 
that the connectivity of the patches in the area did not 
significantly change.

The mean and median values of all the patch diversity 
metrics increased from 2010 to 2035. Throughout the 
entire period, the means of PR, PRD, SHDI, and SIDI 
increased by 32%, 62%, 33%, and 32%, respectively; 
their median values increased by 33%, 31%, 32%, and 
24% respectively. Assessment of changes in each metric 
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Figure 4. Landscape composition from 2010 to 2035.

Figure 5. Mean and median values of fragmentation metrics from 2015 to 2035.



for each period also revealed an increasing trend in the 
mean patch diversity metric values for all transition 
periods. However, the rates of change in the mean 
values were decreasing. Similarly, the same trends can 
be seen for the median values of the metrics, except for 
the 2025-2030 transition period, where median values 
of PRD and SIDI each decreased by 1%, and the 2030-
2035 transition period, where median values of PRD 
decreased by 1% and SIDI and SHDI decreased by 
3%. Overall, the number of patch types, richness, and 
evenness increased by 2035.

Interaction of sediment retention and landscape 
configuration
Multiple linear regression assessed the interaction 
between the changes in sediment retention and the 
changes in various landscape pattern metrics. It 
was also used to measure the degree of influence 
between the dependent variable (i.e., ∆SRI) and 68 
independent variables represented by the landscape 
level and class level fragmentation metrics (i.e., 
∆PD, ∆LPI, ∆ED, ∆GYRATE, ∆DCAD, ∆CONTAG, 
∆COHESION, ∆DIVISION, ∆SPLIT, ∆PR, ∆PRD, 
∆SHDI, ∆SIDI, ∆AI, etc.). However, the correlation 
between the independent variables was measured 
before regression analysis. Correlation analysis of the 
changes in landscape pattern metrics showed that 
most were weakly correlated. Overall, only 1% of the 
correlation coefficients showed a significant correlation 
(i.e., coefficients greater than 0.8) between metrics. ∆PD 
and ∆DCAD were collinear, so ∆PD was not used in 
the regression. Similarly, the class-level metrics ∆PD_
AC, ∆PD_BU, ∆PD_F, ∆PD_GL, and ∆PD_PC were not 
included in the regression due to their collinearity with 
∆DCAD_AC, ∆DCAD_BU, ∆DCAD_F, ∆DCAD_GL, 
and ∆DCAD_PC, respectively. The least correlation was 
between ∆PRD and ∆GYRATE, and ∆PRD and ∆SPLIT. 
The patch diversity metrics were highly correlated, 
and area-edge metrics were the least correlated.

Multiple regression was used on the variables, and 
an F-test was conducted on the regression model to 
assess if the regression coefficients of the independent 
variables were statistically distinguishable from zero. 
Since the p-value of the model F-statistic (Prob > F) is 
equal to 0.0000, the null hypothesis that all coefficients 
are equal to zero and have a greater than 99.99% 
confidence that there is a statistically discernible 
connection between changes in SRI and the changes 
in various landscape pattern metrics can be rejected. 
However, the R-square of the model is low, at 0.2054. 
This implies even though it is statistically significant, 
the spatial patterns of land cover across the landscape 
only explain a small percentage of variance in sediment 

retention. Hence, landscape composition may play a 
more considerable impact on the changes in landscape-
level ecosystem sediment retention.

Looking at the Beta estimates of the regression line, 
DIVISION has the highest magnitude of influence 
per unit change on SRI, followed by AI. However, 
this may be misleading since the maximum value for 
both DIVISION, and AI is one. Meaning attaining the 
highest possible value for DIVISION would increase 
the SRI value by 0.26, and for AI, it would only increase 
the SRI value by 0.13. However, the P-value of the said 
variables indicates low statistical significance at a 95% 
confidence interval. Statistically significant variables at 
a minimum of 95% confidence interval are GYRATE, 
LPI_PC, ED_AC, ED_F, ED_GL, and ED_PC. Four 
variables have the highest t-values and the lowest 
p-values: GYRATE, LPI_PC, ED_AC, and ED_GL. 
These three variables are statistically significant even 
at a greater than 99.9% confidence interval.

Computation of the independent variables' variance 
inflation factor (VIF) revealed that many are collinear, 
with almost half having VIF >10. The collinear variables 
were removed to improve the regression model, which 
resulted in a regression model summarized in Table 6. 
All the remaining variables have a VIF of five or less, 
and about 12 variables were statistically significant at a 
95% confidence interval (i.e., COHESION, ED_AC, ED_
BU, ED_F, ED_GL, ED_PC, GYRATE, GYRATE_AC, 
GYRATE_F, GYRATE_PC, LPI_AC, SPLIT). Of these 
variables, COHESION have the highest regression 
coefficient, which indicates that for every unit increase, 
COHESION would result in a 0.07 decrease in SRI. This 
is followed by SPLIT, which increases SRI by 0.01 for 
every unit increase. On the other hand, GYRATE_PC 
has the lowest regression coefficient of 0.00007.

A Moran’s I test of spatial autocorrelation was also 
done by spatially joining the computed datasets of 
SRI, landscape-level, and class-level fragmentation 
metrics with their corresponding catchments. The 
spatial coordinates of each catchment were used to 
create a neighbors list based on catchments that share 
at least one boundary using Queen’s contiguity criteria 
(Florax & Rey, 1995). This resulted in 1118 non-zero 
links between neighbors with a 5.4 average number 
of links for each catchment; the minimum number of 
links derived in the neighborhood assessment was 
two, and the most connected catchment was assessed 
with 14 links.

A spatial weights matrix was generated for the 
dataset by assigning weights for each catchment 
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using the generated neighbors list utilizing a row-
standardized scheme. The spatial weights matrix 
was used in Moran’s I test for spatial autocorrelation 
under randomization, which resulted in a p-value less 
than 2.2 x 10-16. This means that the dataset exhibits a 
statistically discernible level of spatial autocorrelation. 
The computed Moran’s I coefficient was 0.33512, 
which indicates positive spatial autocorrelation. This is 
corroborated by the results of Geary's C test for spatial 
autocorrelation, which showed similar outputs; the 
p-value was less than 3.452x10-6; the computed Geary's 
C statistic was 0.54763.

Similarly, the residuals of the revised regression 
model were also assessed for spatial autocorrelation 

using Moran’s I test. The results showed statistically 
significant autocorrelation (p-value = 3.92 x 10-15) in 
the residuals of the revised regression model, with 
Moran’s I coefficient equal to 0.31435. A studentized 
Breusch-Pagan test of the model seems to confirm this, 
with a p-value of 2.338 x 10-8 and a coefficient of 89.541, 
which implies heteroskedastic model residuals.

Furthermore, Lagrange Multiplier (LM) diagnostics 
determined the type of spatial dependence present in 
the revised regression model. These include the simple 
LM test for error dependence (LMerr) and the simple 
LM test for a missing spatially lagged dependent 
variable (Lmlag). Lmerr and Lmlag showed statistically 
significant spatial dependence with p-values less 
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Table 6. Coefficients, t values, and collinearity of variables in the revised regression model.

Variable
Standardized coefficient

t P>|t|
Collinearity statistics

Value Std. err. Tolerance VIF
∆DCAD -0.000668 0.000368 -1.81 0.070 0.205333 4.87
∆PRD 0.000896 0.000829 1.08 0.280 0.236922 4.22
∆COHESION -0.073431 0.030182 -2.43 0.015 0.287689 3.48
∆GYRATE_F 0.000275 0.000138 2.00 0.046 0.969213 1.03
∆LPI_AC -0.001917 0.000521 -3.68 0.000 0.513149 1.95
∆LPI_BU -0.000186 0.000632 -0.29 0.769 0.648225 1.54
∆SPLIT -0.014115 0.005653 -2.50 0.013 0.493910 2.02
∆ED_F -0.004968 0.001815 -2.74 0.006 0.925325 1.08
∆PR -0.006918 0.008969 -0.77 0.441 0.658827 1.52
∆ED_AC 0.001561 0.000290 5.38 0.000 0.504455 1.98
∆ED_PC -0.000966 0.000230 -4.21 0.000 0.532330 1.88
∆GYRATE_GL 0.000018 0.000045 0.41 0.679 0.871652 1.15
∆ED_GL 0.002617 0.000295 8.87 0.000 0.660283 1.51
∆GYRATE -0.000248 0.000074 -3.38 0.001 0.572332 1.75
∆CONTAG -0.000213 0.000336 -0.63 0.527 0.662981 1.51
∆SPLIT_GL 0.000000 0.000000 0.63 0.528 0.988660 1.01
∆DCAD_AC 0.000231 0.000744 0.31 0.756 0.541892 1.85
∆ED_BU -0.001192 0.000408 -2.92 0.004 0.587441 1.70
∆SPLIT_F 0.000000 0.000000 0.20 0.841 0.972300 1.03
∆SPLIT_AC 0.000000 0.000000 0.13 0.895 0.993483 1.01
∆GYRATE_PC 0.000072 0.000036 1.99 0.047 0.824849 1.21
∆GYRATE_AC 0.000106 0.000052 2.04 0.042 0.640094 1.56
∆SPLIT_BU 0.000000 0.000000 -0.05 0.959 0.995357 1.00
∆DCAD_GL -0.000231 0.000218 -1.06 0.289 0.779714 1.28
∆DCAD_PC -0.000745 0.000392 -1.90 0.058 0.670509 1.49
∆SPLIT_PC 0.000000 0.000000 1.03 0.305 0.998990 1.00
∆DCAD_BU 0.000056 0.000587 0.10 0.924 0.813139 1.23
∆GYRATE_BU 0.000023 0.000065 0.35 0.727 0.740838 1.35
_cons 0.007195 0.004264 1.69 0.092 Mean VIF 1.72

Note: highlighted variables are statistically significant at α=0.05



than 6.509 x 10-13 and 2.7 x 10-12, respectively. Hence, 
additional LM diagnostics were applied to assess 
further the type of spatial dependence that would best 
describe the residuals of the revised regression model. 
The additional diagnostics tools used were the robust 
LM test for error dependence in the possible presence 
of a missing lagged dependent variable (RLMerr), the 
robust LM test for a missing spatially lagged dependent 
variable in the possible presence of an error dependent 
variable (RLMlag); and a portmanteau test (SARMA) 
which combines both LMerr and RLMlag. RLMerr 
was the only diagnostic with a statistically significant 
p-value; thus, the spatial error model was selected as 
most appropriate for the dataset.

The variables used in the revised regression model were 
fitted in a spatial error model, and a z-test was conducted 
to assess if the coefficients of the independent variables 
were statistically distinguishable from zero. Since the 
p-value of the model is less than 2.1427 x 10-13, we can 
reject the null hypothesis that all coefficients are equal 
to zero and have a greater than 99.9999% confidence 
that there is a statistically discernible connection or 
relationship between changes in SRI and the changes 
in various landscape pattern metrics.

Furthermore, eight variables (i.e., ED_PC, ED_GL, 
DCAD_AC, ED_BU, GYRATE_PC, GYRATE_AC, 
DCAD_GL, and DCAD_PC) were shown to have a 
statistically significant impact on SRI at a minimum 
of 95% confidence interval (Table 7). Of these, ED_GL 
have the highest z-value and the lowest p-value, which 
indicates statistical significance even at a greater than 
99.9999% confidence interval. Looking at the estimated 
coefficients of the variables, DCAD_AC have the 
highest magnitude of influence per unit change on SRI 
– a 0.0242 increase in SRI per unit change in DCAD_
AC. This was followed by ED_GL, whose per unit 
increase also increased SRI by 0.0102. The variables 
ED_BU, DCAD_GL, and DCAD_PC all have negative 
coefficients, which indicate a decrease in SRI for every 
unit increase in the said variables.

Implications and comparison to similar studies
The results of the statistical analysis show that 
increasing the patch size and ED of built-up areas will 
result in a decrease in SRI. Conversely, increasing the 
ED of perennial crops and their average patch size in 
conjunction with a decreased core area will increase SRI 
in the landscape. Similarly, decreasing the core area and 
increasing the ED of grasslands is expected to increase 
SRI in the study area. Furthermore, increasing the core 
area of annual crops while increasing its average patch 
sizes is expected to increase SRI in the landscape. These 

metrics imply that to improve sediment retention in 
the landscape, large and irregular or elongated patches 
might be a better configuration for perennial crops, 
irregular or elongated patches for grasslands, while 
small and compact-shaped patches work best for built-
up areas, and large, and compact-shaped patches are 
optimal for annual crops.

A review article on a meta-analysis of 121 similar studies 
shows that landscape pattern or landscape complexity 
has a 29% cumulative mean effect size on water quality-
related ecosystem services – an aggregation of nutrient 
retention, sediment retention, and other related 
ecosystem services (Duarte et al., 2018). The strongest 
positive effect was observed for the percentage of non-
crop and natural areas, which are composition metrics. 
For landscape configuration, landscape connectivity 
positively influenced water quality, while landscape 
heterogeneity exhibited a significant negative effect. 
However, this only investigated landscape-level 
metrics because this had been more prevalent. Hence it 
is difficult to compare results since class-level metrics 
were the most influential for the MMFR catchments.

Individual studies on class-level metrics seem to come 
to different conclusions on landscape configuration 
and sediment retention. These were also less common; 
hence a consensus may not have been determined yet. 
Stepwise regression determined a negative relationship 
between the aggregation of grasslands and a positive 
relationship between farmlands' aggregation and ED 
to sediment retention in the Liaohe River Reserve, 
China (Xia et al., 2021). Similarly, larger patch sizes, 
higher aggregation, higher ED, and more compact-
shaped agricultural areas result in lower sediment 
yield in the Chenyulan Watershed, Taiwan (Chiang et 
al., 2019).  Both appeared to corroborate this paper’s 
findings. Conversely, in the Blue Nile Basin, the mean 
patch size and LPI of farmlands and settlements have 
a negative correlation, while the patch size and LPI 
of grasslands and the number of farmland patches 
positively correlated with the decrease in sediment 
export (Yohannes et al., 2020). Although the patch 
size and settlement results aligned with the findings 
in the Blue Nile Basin, its farmland correlations were 
contrary. Furthermore, grassland results were also 
similar but were considered statistically insignificant. 
Only one comparable journal article was performed 
in the Philippines, a study on sediment yield in the 
Calumpang Watershed, Batangas (Boongaling et al., 
2018). Here, a higher number of patches, a smaller 
LPI, and less aggregated patches of agriculture were 
assessed to result in lower sediment yield. For built-up 
areas, higher aggregation and compact-shaped patches 
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were deemed to result in lower sediment yield. Their 
results for built-up areas seem to agree with the results 
of this paper, but their results for agriculture imply the 
inverse.

The various methods and metrics used in each study 
may have influenced the differences in findings. For 
instance, the initial regression model in this paper had 
distinct statistically significant variables compared to 
the final spatial error model, with some even having 
inverse beta estimates compared to their initial 
computation. Furthermore, differences in scale may 
also contribute to the variations. This is because a 
lot of ecological processes seem to be sensitive to the 

scaling of dependent variables, including thematic 
scale, spatial grain, and spatial extent, among others 
(Mateo Sánchez et al., 2014; Chambers et al., 2016; Bai et 
al., 2020; Fu et al., 2021; Li et al., 2022;). Since most other 
studies were done at a much larger and coarser scale 
– usually 30 m resolution at a river basin or regional 
scale compared to 5 m resolution at a catchment scale 
– this may result in variations in results. Thematic 
resolution or aggregation of classes also varies in the 
studies. Hence, this highlights the current limitations of 
landscape pattern assessment, and this area of research 
needs further development as new ways of assessing 
landscape patterns emerge (Gustafson, 2019).
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Table 7. Coefficients, asymptotic standard error, and z-values of variables used in the spatial error model.

Variable Coefficient Std. error z value Pr >|z|

∆DCAD -0.0034483 0.0047016 -0.7334000 0.4632967
∆PRD -0.0003846 0.0084534 -0.0455000 0.9637111
∆COHESION -0.1364500 0.1148500 -1.1881000 0.2348087
∆GYRATE_F 0.0002321 0.0002167 1.0713000 0.2840231
∆LPI_AC 0.0012178 0.0011926 1.0211000 0.3072279
∆LPI_BU 0.0016610 0.0014344 1.1580000 0.2468798
∆SPLIT -0.0274340 0.0154650 -1.7739000 0.0760822
∆ED_F -0.0031535 0.0031666 -0.9959000 0.3193079
∆PR 0.0019165 0.0213510 0.0898000 0.9284780
∆ED_AC 0.0016727 0.0013583 1.2314000 0.2181626
∆ED_PC 0.0024504 0.0010917 2.2446000 0.0247951
∆GYRATE_GL -0.0000972 0.0001008 -0.9640000 0.3350305
∆ED_GL 0.0102190 0.0012989 7.8673000 0.0000000
∆GYRATE_MN -0.0002334 0.0001868 -1.2494000 0.2115022
∆CONTAG 0.0000860 0.0008063 0.1066000 0.9150799
∆SPLIT_GL 0.0000000 0.0000000 -0.2744000 0.7837564
∆DCAD_AC 0.0242850 0.0089459 2.7146000 0.0066349
∆ED_BU -0.0038704 0.0012723 -3.0419000 0.0023506
∆SPLIT_F 0.0000000 0.0000000 0.4304000 0.6668757
∆SPLIT_AC 0.0000000 0.0000000 0.5406000 0.5887497
∆GYRATE_PC 0.0002235 0.0000829 2.6974000 0.0069876
∆GYRATE_AC 0.0002676 0.0001014 2.6392000 0.0083113
∆SPLIT_BU 0.0000000 0.0000000 0.0755000 0.9398500
∆DCAD_GL -0.0064074 0.0018346 -3.4926000 0.0004784
∆DCAD_PC -0.0067937 0.0019629 -3.4610000 0.0005381
∆SPLIT_PC 0.0000000 0.0000000 0.1301000 0.8964925
∆DCAD_BU -0.0034762 0.0025619 -1.3569000 0.1748208
∆GYRATE_BU 0.0001023 0.0001468 0.6972000 0.4856620
(Intercept) 0.0007395 0.0397530 0.0186000 0.9851594

Note: highlighted variables are statistically significant at α=0.05



CONCLUSION AND RECOMMENDATIONS

Landscape configuration has been found to have a 
statistically significant influence on the catchment-
level sediment retention of the study area. Although 
results still need to be verified on the field or by 
duplicate studies, this holds potential for landscape 
and watershed management. The spatial error model 
implies that, to a certain degree, the spatial design and 
configuration of land use and land cover may also be 
utilized to improve sediment retention and mitigate 
soil erosion.

However, even though eight landscape pattern metrics 
have statistically significant relationships with SRI, the 
proportion of changes in SRI that can be attributed to the 
landscape pattern metrics used in the study is less than 
5%. It is important to note that landscape composition 
tends to be the most important indicator of sediment 
retention for landscape-level interactions. However, 
at least one study seems to have contradictory results, 
with landscape configuration being more important. 
This is a limitation of the study since it looks at the 
impacts of landscape configuration in isolation of 
landscape composition. Further investigation should 
be done by incorporating landscape composition 
in the statistical analysis to determine its degree of 
influence on sediment retention vis-à-vis landscape 
configuration.

Another limitation of the study is that it analyzed a 
set scale – of 5 m resolution at a catchment scale. A 
potential area of research missing in this study is the 
integration of statistical scale screening, selection, 
or optimization of the landscape pattern metrics. A 
multiscale analysis optimizes the scale of each variable 
in the statistical model. This type of multiscale analysis 
reduces the impact of scale on dependent variables 
and could potentially improve the comparability of 
such studies. Lastly, hypothetical land cover pattern 
generation methods should be explored to assess 
ecosystem service and landscape pattern relation over 
a wider range of hypothetical landscape compositions 
and configurations. Additional studies into this field 
are warranted, including similar studies on other 
spatially sensitive ecosystem services. A meaningful 
understanding of their interaction could be valuable 
in improving existing measures and developing novel 
methods and guidelines for soil and water conservation 
or land use and watershed management planning in 
the Philippines.
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Annex 1. Equations and descriptions of the landscape pattern metrics used.
Landscape metric Equation Description (McGarigal, 2015)

Patch density
It is the number of patches of a patch 
type divided by the total landscape 
area.

Edge density
Is the sum of the lengths (m) of all edge 
segments divided by the landscape 
area (m2)

Mean radius of gyration

This is a measure of patch extent; thus, 
it is affected by both patch size and 
patch compaction.

Largest patch index

A simple measure of dominance, the 
index quantifies the percent of the 
total landscape area comprised by the 
largest patch.

Disjunct core area density
This expresses the number of disjunct 
core areas on a per unit area basis. 

Contagion index

It is affected by the dispersion and 
interspersion of patch types. Hence, 
if a single class occupies a significant 
percentage of the landscape, contagion 
is high. 

Aggrega-tion index
It is calculated from an adjacency 
matrix at the class level which is then 
aggregated at the landscape level.

Landscape division index

It is the cumulative patch area 
distribution and probability that two 
random landscape pixels are not in the 
same patch.

Splitting index
Based on the cumulative patch area 
distribution, it is interpreted as the 
effective mesh number

Patch cohesion index
This index at the class level measures 
the physical connectedness of the 
corresponding patch type. 

Patch richness
It is the number of different patch types 
present within the landscape boundary.

Patch richness density
This standardizes richness to a per 
area basis that facilitates comparison 
among landscapes.

Shannon’s diversity index
A measure of diversity applied to 
landscapes. It is more sensitive to rare 
patch types than Simpson.

Simpson’s diversity index
More intuitive than Shannon, it denotes 
the probability that 2 pixels would be 
different patch types.




