

Journal of Environmental Science and Management 21-1:100-109 (December 2017) ISSN 0119-1144

# The Effect of Particulate Matter on Visibility in Hangzhou, China



#### **ABSTRACT**

Hangzhou, a humid subtropical city of China, was studied to investigate the effect of particulate matters (PMs) and its fractions (e.g.,  $PM_{2.5}$  and  $PM_{2.5-10}$ ) and levels of relative humidity (10 to >90%) on atmospheric visibility. It was found that finer fractions of PM have greater negative effect on visibility. This inverse relationship was pronounced during winter season, having the highest  $PM_{2.5}$  concentrations and the lowest visual range. Summer season exhibited the highest visual range and least  $PM_{2.5}$  fractions, along with autumn. Furthermore, lower relative humidity coincides with higher visual range regardless of the PM fractions. As the levels of relative humidity went up (>90%), lower values of visual range were measured. The results from this study suggest that lower target levels of  $PM_{2.5}$  is needed for Hangzhou in order to prevent episodes of poor visibility.

Jian Wu<sup>1, 2</sup> Wen Cheng<sup>1</sup> Huijian Lu<sup>3</sup> Yao Shi<sup>3</sup> Yi He<sup>3\*</sup>

- <sup>1</sup> Xi'an University of Technology, Xi'an, China
- <sup>2</sup> Environmental Science Research and Design Institute of Zhejiang Province, Hangzhou, China
- <sup>3</sup> Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China

\*Corresponding author: yihezj@zju.edu.cn

**Key words**: Visibility; Particulate Matter; Humidity.

### **INTRODUCTION**

Visibility is a convenient indicator for the public to evaluate air quality. Poor visibility often leads to serious concerns, or sometime even causes panic in the general public due to its indication of the potential hazard to human health.(Pui et al. 2014; Yang et al. 2013; Zhao et al. 2013) Therefore, it is crucial to understand what may affect visibility under various circumstances so that appropriate pollution control policies can be made to mitigate visibility degradation. With the increase of public awareness about visibility degradation or hazy weather, Chinese governments have made regulatory efforts to fight against air pollution in recent years, for instance, the China Ministry of Environmental Protection promulgated a new PM<sub>2.5</sub> standard in early 2012. In line with this, many local authorities have overhauled regional standards for air pollution control and proposed roadmaps to improve air quality, accordingly.

The success of these efforts would not be possible without the sufficient understanding of the characteristics of air pollution and its relationship with visibility, as China is such a large country with various industries unevenly distributed in different regions. Moreover, the climate in China varies from one region to another since the country is a massive one. Therefore, in order to obtain a better understanding of the relationship between the visibility and the concentration of PM2.5, the investigations of air pollution should be carried out in Chinese cities in different regions.

The relationship between visibility and particulate matters (PMs) has been examined in several major cities in eastern Asia in recent years.(*Han et al. 2014; Kuo et al. 2013; Pui et al. 2014; Wang et al. 2013*) For instance, Chen et. al. studied the effects of relative humidity (RH) and water soluble components in PM2.5 on atmospheric visibility in Beijing under different meteorological conditions.(*Chen et al., 2014*) The analysis of PM<sub>2.5</sub> samples collected in Spring 2012 shows that water soluble species takes up 38.1% of the total mass of PM<sub>2.5</sub>, among which NO<sub>3</sub>— was the most abundant constituent, followed by SO<sub>4</sub><sup>2-</sup>, NH<sub>4</sub>+ and water soluble organic matter. Their correlation analysis further revealed that visibility was better correlated with the total mass of

water soluble constituents (WSC) compared to the total aerosol loading of PM, 5. The visual range was the most sensitive factor to both WSC and PM25 in a RH of 30-70%. Severe visibility impairment was observed for RH  $\geq$  70% with the least sensitivity to WSC and PM<sub>25</sub>. In another study by Deng and his coworkers, they investigated the changing trend of visibility in Taiwan Strait and its influence factors, including the effects of PM<sub>2,5</sub> and PM10.(*Deng et al. 2014*) They found negative correlations of airborne PMs with visibility with r-values between -0.58 and 0.76, which suggests the significant contribution of PMs to light extinction. The associations between PM<sub>2.5</sub> and visibility have more negative correlation coefficients than that between PM<sub>10</sub> and visibility, suggesting that, PM, 5 played a more important role in visibility deterioration over the cross-strait region than PM<sub>10</sub>.

Hangzhou is situated in a subtropical area with distinct seasonal weather conditions, and is 50-km away from the western rim of the Pacific Ocean. Hangzhou is experiencing both fast urbanization and growing environmental issues: (Xiao et al. 2011) as of 2010, the population of Hangzhou ranked sixth in China, and the population density was 1,214 km<sup>-2</sup>. While the city is a traditional hotspot for national and international tourists. it also suffered from severe air pollution due to the fact that the city is located in the Yangtze River Delta (YRD). one of the most developed regions in China. In recent years, hazy weather with poor visibility becomes frequent in Hangzhou. However, only few studies have analyzed the key factors that are detrimental to visibility.(Xiao et al. 2011) Moreover, along with the fast economic growth and the evolvement of local industries, the chemical composition of pollutants also varies significantly over the past few years.

The understanding of the relationship between visibility and PM pollution is indispensable for the pollution control in cities like Hangzhou. To this end, we conducted an extensive investigation in Hangzhou from Dec. 1, 2012 to Nov. 30, 2013. In addition, the correlation between visibility and the chemical composition of PM<sub>25</sub> from Oct. 13, 2013 to Nov. 1, 2013 was analyzed as a case study. As Hangzhou is a typical humid subtropical city with four distinctive seasons, visibility and the concentrations of fine (PM<sub>2.5</sub>) and coarse (PM<sub>2.5~10</sub>) particulate matter for the seasons were firstly discussed. PM<sub>2.5~10</sub> represents particulate matters with an aerodynamic diameter of 2.5~10µm. The statistical correlation among visibility, PMs, and RH in Hangzhou was then examined. Finally, the effects of different chemical species on visibility were investigated to provide additional information for the understanding of the alleviation of poor visibility.

#### **METHODOLOGY**

### **Site Description**

All in situ measurements of aerosol optical properties and meteorology factors were conducted at Zhaohui station (30°17'28.4"N, 120°10'39.7"E) (**Figure 1**). The instruments at the station were installed on the roof of a building. They are at 20 m above ground level (AGL). The station is in the convergence of commercial, residential and educational zones without apparent industrial pollution sources, thus the air quality at this place can be considered as typical for Hangzhou urban areas. There is no industrial activity near the site.

### **Duration of Sampling**

Sampling, other than those for chemical analysis, was conducted at the Zhaohui station from Dec. 1, 2012 to Nov. 30, 2013. For chemical analysis, sampling period was from Oct. 13, 2013 to Nov. 1, 2013. As the sampling region was raining frequently, PM<sub>2.5</sub> samples were only concurrently collected at the Zhaohui station during non-raining days. On each sampling day, samples were collected for 20 hours so that the total volume of air sample is equivalent to the average volume of air a



Figure 1. The geological location of the Zhaohui station (© OpenStreetMap contributors. Tiles courtesy of MapQuest).

person inhales on each day. Overall, this study collected a total of PM samples, each fractionated into  $PM_{2.5}$ ,  $PM_{2.5-10}$ , and  $PM_{10}$ . The same number of samples were generated for visibility.

Samplers. For continuous monitoring, PM<sub>2.5</sub> and PM<sub>2.5~10</sub> sampler is a Thermo Scientific 1405-DF Continuous Dichotomous Ambient Air Monitor. This sampler utilizes two Tapered Element Oscillating Microbalances (TEOM) and two Filter Dynamics Measurement Systems (FDMS), which account for volatile and nonvolatile particulate matter (PM) fractions. Calibrations for temperature, barometric pressure, relative humidity (RH), and volumetric flow measurements were done automatically to guarantee data accuracy. Atmospheric visibility was measured with a visibility sensor (Belfort Model 6000, visual range: 6m-80km).

For PM $_{2.5}$  samples used for chemical analysis, the samplers were the model TH-150C, manufactured by Wuhan Tianhong Instruments Co., Ltd. The operational volume flow rate for PM $_{2.5}$  samplers was set at 100 L min $^{-1}$ , and the size cut was at 2.5  $\mu$ m. Three TH-150C samplers were used to collect three concurrent PM $_{2.5}$  samples for analyzing inorganic elements, soluble ions, and carbon items, respectively. For elemental analysis, PTEF organic filters (Sumitomo Electric Fine Polymer, Inc.) were used. The pore size was 0.3  $\mu$ m for the filters, and the collection efficiency at 0.15  $\mu$ m was 99.97% for organic filters.

#### Chemical analysis

The bulk masses of PM2.5 samples were weighed with a balance (0.0001 accuracy), and the speciation was conducted for nine ions and two carbon items. Details are elaborated as follows.

**Water Soluble Ions.** After sampling, a piece of organic filters loaded with PM<sub>2.5</sub> were put into 25 ml cuvettes. Then, 20.00 ml deionized water was added and bubbles expelled. The cuvettes were placed in a supersonic cleaner running for 20 minutes. After being stilled for a while, clear solution in top layer was drawn and filtered before being analyzed by Ion Chromatography for watersoluble anions (F<sup>-</sup>, Cl<sup>-</sup>, NO<sub>3</sub><sup>-</sup>, SO<sub>4</sub><sup>2-</sup>; Dionex IC DX600) and cations (NH<sub>4</sub><sup>+</sup>, K<sup>+</sup>, Na<sup>+</sup>, Ca<sup>2+</sup>, Mg<sup>2+</sup>; Dionex ICS-90).

**Carbon Analysis**. After sampling, quartz filters loaded with PM<sub>2.5</sub> were put on new and clean aluminum foil, and a representative piece was obtained carefully. A second piece with the same area was obtained and processed as

follows to remove carbonate. First, the second piece was soaked in concentrated HCl solution in a covered container. Then, the container was placed in a ventilator cabinet for about an hour to remove carbonate in form of CO<sub>2</sub> and for another hour to let remaining HCl evaporate. The sample was then kept at low temperature and saved for subsequent analyses.

The organic, elemental, and total carbon contents of PM<sub>25</sub> samples were determined with a thermophotometric carbon analyzer (DRI Model 2001A). A piece of processed sample filter (0.495 cm<sup>2</sup>) was put in an environment with pure He gas without O<sub>2</sub>, and was heated progressively at 120°C, 250°C, 450°C, and 550°C first to determine organic carbon (OC) contents OC1, OC2, OC3, and OC4, respectively. Then, in an environment with 2% O2 and 98% He, the sample was further heated progressively at 550°C, 700°C, and 800°C to determine elemental carbon (EC) contents EC1, EC2, and EC3. The CO<sub>2</sub> produced within each temperature ladder was reduced into CH4, catalyzed by MnO2, and detected by Flame Ionization Detector. During heating processes, part of organic carbon was converted into black carbon, which hindered clear distinction between organic carbon and elemental carbon. Hence, the reflection intensity of the He-Ne laser light at 633 nm by a monitoring filter was used to gauge the starting temperature of the oxidation of elemental carbon, to ensure science-based distinction between organic carbon and elemental carbon.

#### RESULTS AND DISCUSSION

# The effect of Particulate Matter on visibility across seasons

In order to study the effect of the size of Particulate Matter (PM) on visibility across seasons, the relationship between visibility and the concentrations of PM<sub>2.5</sub>, PM<sub>2.5~10</sub> and PM<sub>10</sub> in the four seasons covered were examined. Generally, visibility was reduced as the concentrations of PM increased (**Figure 2 - Figure 5**). This same pattern was observed for all PM fractions studied.

Summer is the one with the best overall visibility among all four seasons, as most of the data points in summer show a visual range longer than 10 km (**Figure 4**). The least visibility was observed during winter season with most data exhibiting a visual range less than 10 km with an average of  $\sim$ 4 km. Another feature in winter differs from other seasons is the observed maximum concentration of PM<sub>2.5</sub>, which is almost twice larger than the maximum concentration of PM<sub>2.5 $\sim$ 10</sub>. As a comparison, in the other three seasons, the maximum concentrations

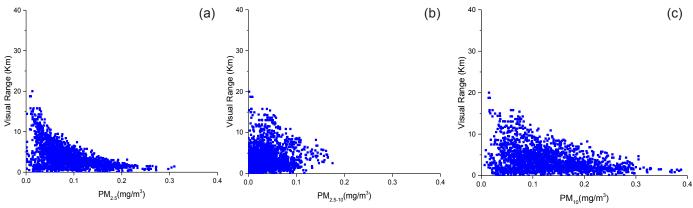



Figure 2. Visual range and concentrations of (a)  $PM_{2.5}$ , (b)  $PM_{2.5-10}$ , and (c)  $PM_{10}$  in winter (From Dec. 1, 2012 to Feb. 30, 2013).

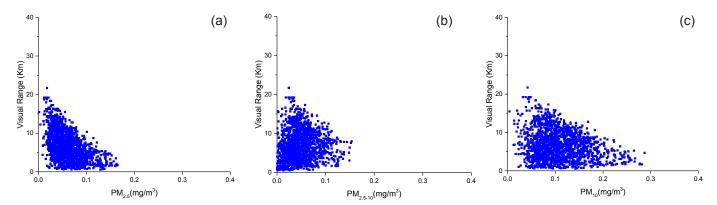



Figure 3. Visual range and concentrations of (a)  $PM_{2.5}$ , (b)  $PM_{2.5\sim10}$ , and (c)  $PM_{10}$  in spring (From March 1 to May 31, 2013).

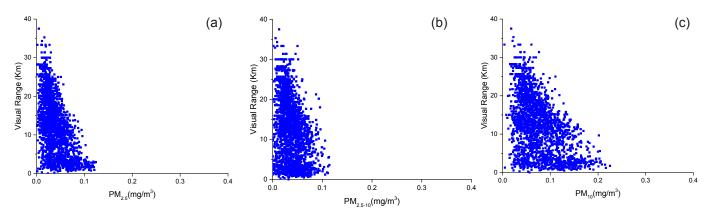
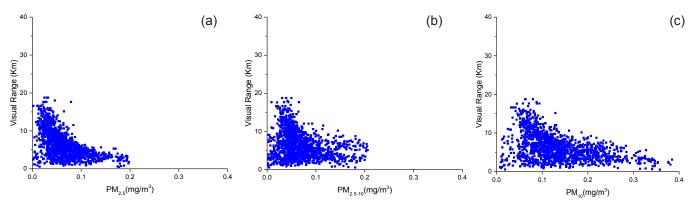




Figure 4. Visual range and concentrations of (a)  $PM_{2.5}$ , (b)  $PM_{2.5\sim10}$ , and (c)  $PM_{10}$  in summer (From June 1 to August 31, 2013).



 $Figure \ 5. \ Visual \ range \ and \ concentrations \ of \ (a) \ PM_{2.5}, \ (b) \ PM_{2.5\sim10}, \ and \ (c) \ PM_{10} \ in \ autumn \ (From \ Sept. \ 1 \ to \ Nov. \ 30, 2013).$ 

of  $PM_{2.5}$  and  $PM_{2.5\sim10}$  are very close to each other.

A closer look at the pattern of relationship between PM<sub>2.5</sub> and PM<sub>2.5~10</sub> and visibility reveals that the relationships may be related to the mass ratio of PM<sub>2.5</sub>/PM<sub>2.5~10</sub>. The ratio is significantly larger in winter than in other seasons, which means more PM<sub>2.5</sub> fraction was present in the air during winter compared to other seasons, which coincides with lowest visibility among all seasons (**Figure 6** and **7**). This could also be brought about by the prevailing wind from the north during winter bringing along dust to Hangzhou.

## Relationship between visibility and Particulate Matter as affected by Relative Humidity

Comparison of the graphs showed that most visibility data were at a lower visual range during high levels of relative humidity (>90%) (**Figure 8**). In contrast, longer visual range was observed as the levels of relative humidity went lower (e.g., 10 to 20%), which also been

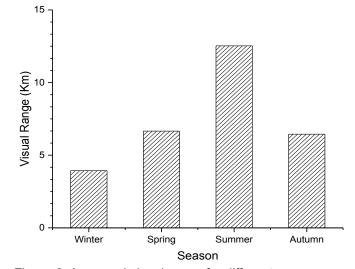



Figure 6. Averaged visual range for different seasons.

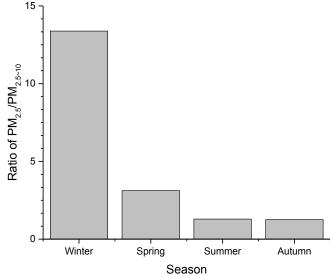



Figure 7. Averaged ratio of  $PM_{2.5}/PM_{2.5\sim10}$  for different seasons.

reported similarly in other studies in Beijing,(*Chen et al. 2014*) and Guangzhou (China).(*Tao et al. 2012; Tao et al. 2009; Tao et al. 2014*).

In addition, despite the fact that PM10 also correlates well with visibility in a range of RH similar to  $PM_{2.5}$ ,  $PM_{2.5\sim10}$  exhibited poor correlations with visual range (**Table 1**). The relationship between visibility and  $PM_{2.5\sim10}$  is in general, weaker than that of visibility and  $PM_{2.5}$ . This indicates that  $PM_{2.5}$  is the major constituent in PMs which causes visibility reduction. Most days in Hangzhou has levels of RH higher than 20% (**Figure 8**). As visual range is very sensitive to the concentration of  $PM_{2.5}$ , a  $PM_{2.5}$  control policy for Hangzhou needs to target at a lower level than that for the dry cities in northern part of China.

# Relationship between visibility and the chemical composition of PM2.5

Because it is PM<sub>2.5</sub>, not PM<sub>2.5-10</sub>, which plays a key

Table 1. Regression analysis between visibility and Particulate Matter (PM) in different ranges of Relative Humidity (RH) from Dec 1, 2012 to Nov. 30, 2013.

|          | PM <sub>2.5</sub>      |       | PM <sub>2.5-10</sub>   |       | PM <sub>10</sub>       |       |  |
|----------|------------------------|-------|------------------------|-------|------------------------|-------|--|
|          | Equation               | R     | Equation               | R     | Equation               | R     |  |
| RH>90    | y=0.3358x -0.544       | 0.241 | $y=1.486x^{-0.051}$    | 0.004 | y=0.4191x -0.551       | 0.184 |  |
| 80≤RH<90 | $y=0.3955x^{-0.784}$   | 0.677 | $y=2.0016x^{-0.187}$   | 0.054 | $y=0.5152x^{-0.844}$   | 0.539 |  |
| 70≤RH<80 | $y=0.5179x^{-0.821}$   | 0.749 | $y=1.7991x^{-0.342}$   | 0.142 | $y=0.6977x^{-0.902}$   | 0.627 |  |
| 60≤RH<70 | $y=0.7983x^{-0.756}$   | 0.652 | $y=1.5433x^{-0.516}$   | 0.202 | $y=0.8901x^{-0.933}$   | 0.606 |  |
| 50≤RH<60 | $y=0.9781x^{-0.75}$    | 0.703 | $y=1.699x^{-0.557}$    | 0.292 | $y=1.1056x^{-0.923}$   | 0.688 |  |
| 40≤RH<50 | $y=0.1237x^{-0.733}$   | 0.711 | $y=1.8806x^{-0.562}$   | 0.435 | $y=1.5028x^{-0.841}$   | 0.734 |  |
| 30≤RH<40 | $y=1.2199x^{-0.714}$   | 0.622 | $y=1.898x^{-0.602}$    | 0.557 | $y=1.7551x^{-0.811}$   | 0.737 |  |
| 20≤RH<30 | $y=3.428x^{-0.363}$    | 0.306 | $y=3.8113x^{-0.359}$   | 0.383 | $y=3.2192x^{-0.538}$   | 0.518 |  |
| 10≤RH<20 | $y = 7.5236x^{-0.146}$ | 0.208 | $y = 9.0531x^{-0.112}$ | 0.039 | $y = 6.9379x^{-0.246}$ | 0.192 |  |

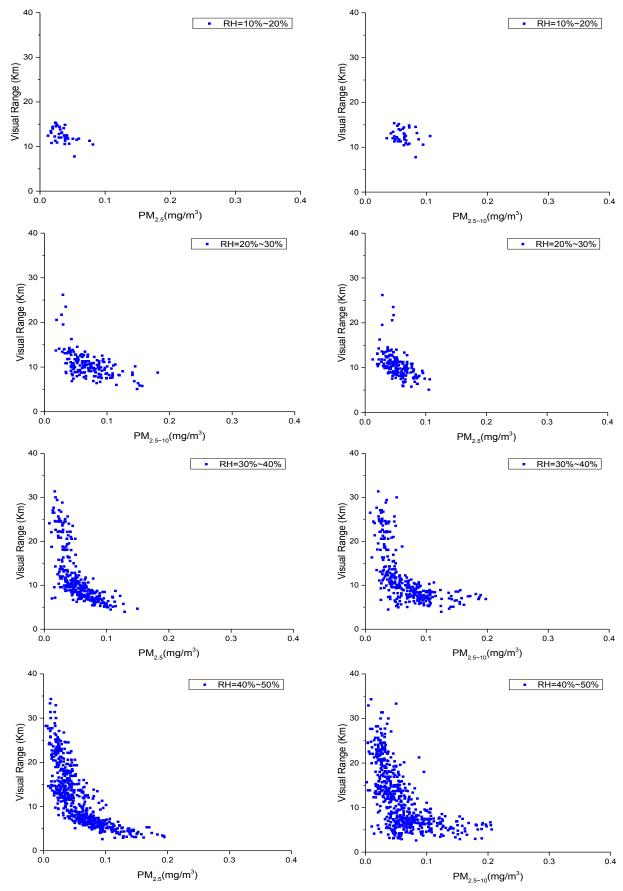



Figure 8. Relationship between visibility and concentrations of  $PM_{2.5}$  and  $PM_{2.5\sim10}$  at different levels of relative humidity (RH) from Dec 1, 2012 to Nov. 30, 2013.

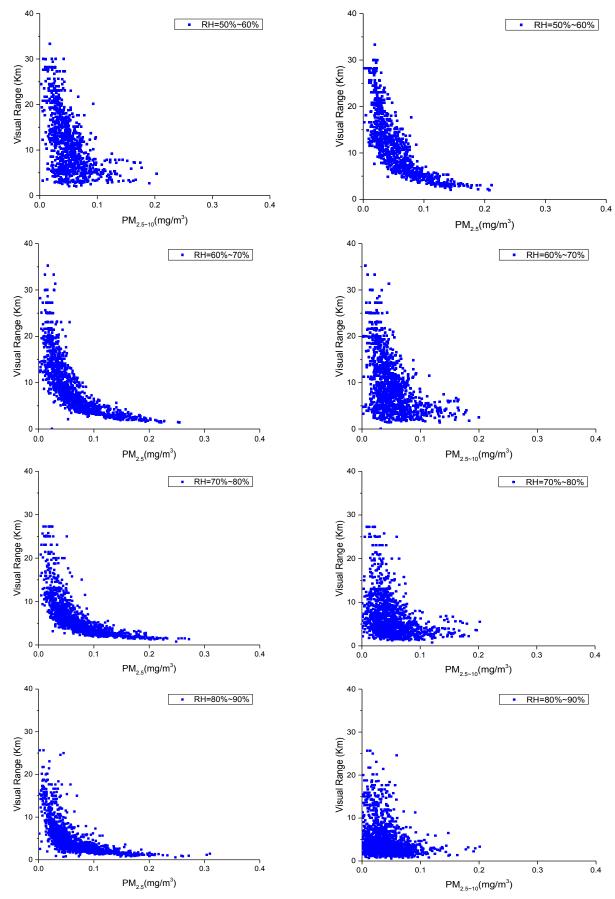



Figure 8. Relationship between visibility and concentrations of  $PM_{2.5}$  and  $PM_{2.5\sim10}$  at different levels of relative humidity (RH) from Dec 1, 2012 to Nov. 30, 2013 (cont.).

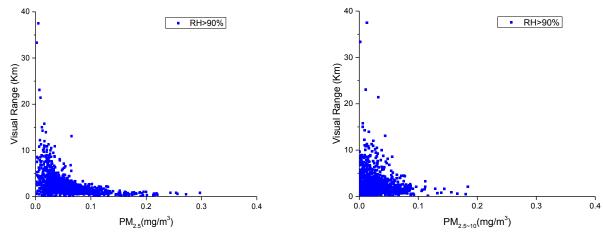



Figure 8. Relationship between visibility and concentrations of PM<sub>2.5</sub> and PM<sub>2.5~10</sub> at different levels of relative humidity (RH) from Dec 1, 2012 to Nov. 30, 2013 (cont.).

role in visibility reduction, this study further examined the chemical composition of PM<sub>2.5</sub>. The average daily PM<sub>25</sub> concentrations during the sampling period from Oct. 13, 2013 to Nov. 1, 2013 at the Zhaohui station was found to be 78.7±27.9 μg m<sup>-3</sup>. Meanwhile, the maximum and minimum daily PM<sub>2.5</sub> concentrations were 121.3 μg m<sup>-3</sup> and 30.6 μg m<sup>-3</sup>, respectively. Meanwhile, 60.9% of the PM<sub>2.5</sub> were water soluble ions (**Table 2**). Among them, NO<sub>3</sub><sup>-</sup> and SO<sub>4</sub><sup>2</sup> were the two dominant constituents. These secondary constituents were usually considered to be derived from the gaseous precursors SO, and NO. (Liu et al. 2014) Strong solar radiation, high ambient temperature, and high relative humidity enhance photochemical processes. (Song et al. 2006) The low concentration of elements, such as Al, Si, Fe, and Ca suggests that road dust has a relatively small impact on air quality during the sampling period.

Water-soluble ions were important fractions of PM, 5

which may affect visibility. There were inverse correlations between visibility and secondary inorganic salts (NO<sub>3</sub>-, SO<sub>4</sub><sup>2</sup>-, and NH<sub>4</sub>+), which suggests that secondary inorganic salts do contribute significantly to the reduction of visibility (**Table 3**). Nitrates and sulfates were found to be the components that contribute most to light scattering which lead to visibility reduction, similar to what was reported by Kuo and his coworkers.(*Kuo et al. 2013*) They observed significant inverse correlations between visibility and NO<sub>3</sub>-, SO<sub>4</sub><sup>2</sup>- and NH<sub>4</sub>+ at both Taichung and Wuchi stations in Taiwan. In another visibility study,

Farber et. al. (1994) reported that sulfate, nitrate, and carbon species were the dominant particulate species during a hazy weather in Los Angeles. Similar results were found in Seoul through the chemical analysis of PM<sub>2.5</sub> in haze periods (*Geng et al., 2011; Kang et al., 2004*). In Shanghai, secondary inorganic pollution,

Table 2. The mass concentrations of major components in PM<sub>2.5</sub>.

| Constituents Average concentration (μg m³) |          | Maximum concentration (μg m³) | Minimum concentration (μg m³) |  |  |
|--------------------------------------------|----------|-------------------------------|-------------------------------|--|--|
| OC                                         | 14.5±6.5 | 27.5                          | 0.0                           |  |  |
| EC                                         | 4.4±2.0  | 8.6                           | 1.6                           |  |  |
| F-                                         | 0.1±0.1  | 0.3                           | 0.0                           |  |  |
| Cl-                                        | 4.3±1.9  | 9.9                           | 1.9                           |  |  |
| $NO_3^-$                                   | 12.6±5.4 | 20.2                          | 3.6                           |  |  |
| $SO_4^{\frac{3}{2}}$                       | 18.1±7.1 | 29.2                          | 7.4                           |  |  |
| $Na^{+}$                                   | 1.9±0.7  | 2.9                           | 0.4                           |  |  |
| $\mathrm{NH_4}^+$                          | 7.6±3.7  | 13.3                          | 1.0                           |  |  |
| $K^{+}$                                    | 0.8±0.6  | 1.9                           | 0.0                           |  |  |
| ${{ m Mg}_2}^+ \ {{ m Ca}_2}^+ \ { m Al}$  | 0.2±0.1  | 0.3                           | 0.1                           |  |  |
| $Ca_{2}^{+}$                               | 1.5±0.7  | 2.7                           | 0.0                           |  |  |
| ΑĨ                                         | 0.4±0.1  | 0.6                           | 0.2                           |  |  |
| Si                                         | 0.7±0.2  | 1.0                           | 0.4                           |  |  |
| Ca                                         | 0.3±0.1  | 0.4                           | 0.1                           |  |  |
| Fe                                         | 0.6±0.2  | 1.0                           | 0.3                           |  |  |

Table 3. Relationship between visibility and water soluble ions in PM<sub>2.5</sub>.

| Soluble Ions                     | F-     | Cl     | NO <sub>3</sub> - | SO <sub>4</sub> <sup>2-</sup> | Na <sub>+</sub> | NH <sub>4</sub> <sup>+</sup> | K <sup>+</sup> | $\mathbf{Mg}_{2}^{+}$ | Ca <sub>2</sub> <sup>+</sup> |
|----------------------------------|--------|--------|-------------------|-------------------------------|-----------------|------------------------------|----------------|-----------------------|------------------------------|
| Pearson Correlation Coefficients | -0.561 | -0.531 | -0.782            | -0.678                        | -0.146          | -0.783                       | -0.669         | -0.289                | -0.219                       |

together with dust and biomass burning, were identified to be three typical haze types (*Du et al., 2011; Huang et al., 2012*).

Organic Carbon (OC) and Elemental Carbon (EC) are important components of PM<sub>2.5</sub> which also affects visibility (*Turpin and Huntzicker 1995*) The sources of carbonaceous aerosols can be evaluated with the ratio of OC and EC concentrations(*Cao et al., 2007; Zhang et al., 2007*) The OC and EC, as well as TC, have similar negative impact on atmospheric visibility (**Table 4**). However, the effect of these carbonaceous components on visibility is weaker than typical species of secondary inorganic aerosols such as NO<sub>3</sub>-, SO<sub>4</sub><sup>2-</sup>.

Table 4. Relationship between visibility and carbonaceous component in PM<sub>2.5</sub>.

| Component                       | OC     | EC     | TC     |  |
|---------------------------------|--------|--------|--------|--|
| Pearson Correlation coefficient | -0.492 | -0.443 | -0.488 |  |

#### CONCLUSION AND RECOMMENDATIONS

This study examined the effect of Particulate Matter (PM) fractions and humidity on atmospheric visibility in Hangzhou, China. It was found that PM negatively affects visibility. Among the PM fractions, PM<sub>25</sub> has the greatest effect on visibility. Furthermore, with lower relative humidity (RH) (e.g., 10 to 20%), visual range was more than 10 km. As the relative humidity levels went up (e.g., >90%), the visual range or visibility was reduced. Summer season exhibited higher visibility, while winter has the least among the four seasons, coinciding with greater PM<sub>2.5</sub> concentrations during winter. Furthermore, this study found that secondary inorganic salts (NO<sub>3</sub>-, SO<sub>4</sub><sup>2</sup> and NH<sub>4</sub><sup>+</sup>) does contribute to the reduction of visibility. As Hangzhou is humid subtropical city with levels of RH mostly higher than 20%, a lower target levels for PM<sub>2.5</sub> is needed for Hangzhou in order to prevent episodes of poor atmospheric visibility.

#### REFERENCES

Cao, J.J., Lee, S.C., Chow, J.C., Watson, J.G., Ho, K.F., Zhang, R.J., Jin, Z.D., Shen, Z.X., Chen, G.C., Kang, Y.M., Zou, S.C., Zhang, L.Z., Qi, S.H., Dai, M.H., Cheng, Y. and Hu, K., 2007. "Spatial and seasonal distributions of carbonaceous aerosols over China". *Journal of*  Geophysical Research-Atmospheres 112.

- Chen, J., Qiu, S.S., Shang, J., Wilfrid, O.M.F., Liu, X.G., Tian, H.Z. and Boman, J., 2014. "Impact of Relative Humidity and Water Soluble Constituents of PM2.5 on Visibility Impairment in Beijing, China". Aerosol and Air Quality Research 14, 260-268.
- Deng, J.J., Xing, Z.Y., Zhuang, B.L. and Du, K. 2014. "Comparative study on long-term visibility trend and its affecting factors on both sides of the Taiwan Strait". *Atmospheric Research* 143, 266-278.
- Du, H.H., Kong, L.D., Cheng, T.T., Chen, J.M., Du, J.F., Li, L., Xia, X.G., Leng, C.P. and Huang, G.H. 2011. "Insights into summertime haze pollution events over Shanghai based on online water-soluble ionic composition of aerosols". Atmospheric Environment 45, 5131-5137.
- Farber, R.J., Welsing, P.R. and Rozzi, C. 1994. "PM10 and Ozone Control Strategy to Improve Visibility in the Los Angeles Basin". *Atmospheric Environment* 28, 3277-3283.
- Geng, H., Ryu, J.Y., Maskey, S., Jung, H.J. and Ro, C.U. 2011. "Characterisation of individual aerosol particles collected during a haze episode in Incheon, Korea using the quantitative ED-EPMA technique". Atmospheric Chemistry and Physics 11, 1327-1337.
- Han, T.T., Liu, X.G., Zhang, Y.H., Qu, Y., Gu, J.W., Ma, Q., Lu, K.D., Tian, H.Z., Chen, J., Zeng, L.M., Hu, M. and Zhu, T. 2014. "Characteristics of Aerosol Optical Properties and Their Chemical Apportionments during CAREBeijing 2006". Aerosol and Air Quality Research 14, 1431-1442.
- Huang, K., Zhuang, G., Lin, Y., Fu, J.S., Wang, Q., Liu, T., Zhang, R., Jiang, Y., Deng, C., Fu, Q., Hsu, N.C. and Cao, B. 2012. "Typical types and formation mechanisms of haze in an Eastern Asia megacity, Shanghai". Atmospheric Chemistry and Physics 12, 105-124.
- Kang, C.M., Lee, H.S., Kang, B.W., Lee, S.K. and Sunwoo, Y. 2004. "Chemical characteristics of acidic gas pollutants and PM2.5 species during hazy episodes in Seoul, South Korea". Atmospheric Environment 38, 4749-4760.
- Kuo, C.Y., Cheng, F.C., Chang, S.Y., Lin, C.Y., Chou, C.C.K., Chou, C.H. and Lin, Y.R. 2013. "Analysis of the major factors affecting the visibility degradation in two stations". *Journal of the Air & Waste Management* Association 63, 433-441.

- Liu, Y.J., Zhang, T.T., Liu, Q.Y., Zhang, R.J., Sun, Z.Q. and Zhang, M.G. 2014. "Seasonal Variation of Physical and Chemical Properties in TSP, PM10 and PM2.5 at a Roadside Site in Beijing and Their Influence on Atmospheric Visibility". *Aerosol and Air Quality Research* 14, 954-969.
- Pui, D.Y.H., Chen, S.C. and Zuo, Z.L. 2014. "PM2.5 in China: Measurements, sources, visibility and health effects, and mitigation". *Particuology* 13, 1-26.
- Song, Y., Xie, S.D., Zhang, Y.H., Zeng, L.M., Salmon, L.G. and Zheng, M. 2006. "Source apportionment of PM2.5 in Beijing using principal component analysis/absolute principal component scores and UNMIX". Science of the Total Environment 372, 278-286.
- Tao, J., Cao, J.J., Zhang, R.J., Zhu, L.H., Zhang, T., Shi, S. and Chan, C.Y. 2012. "Reconstructed Light Extinction Coefficients Using Chemical Compositions of PM2.5 in Winter in Urban Guangzhou, China". Advances in Atmospheric Sciences 29, 359-368.
- Tao, J., Ho, K.F., Chen, L.G., Zhu, L.H., Han, J.L. and Xu, Z.C. 2009. "Effect of chemical composition of PM2.5 on visibility in Guangzhou, China, 2007 spring". Particuology 7, 68-75.
- Tao, J., Zhang, L.M., Ho, K.F., Zhang, R.J., Lin, Z.J., Zhang,
  Z.S., Lin, M., Cao, J.J., Liu, S.X. and Wang, G.H. 2014.
  "Impact of PM2.5 chemical compositions on aerosol light scattering in Guangzhou the largest megacity in South China". *Atmospheric Research* 135, 48-58.
- Turpin, B.J. and Huntzicker, J.J. 1995. "Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS". *Atmospheric Environment* 29, 3527-3544.
- Wang, Q.Y., Cao, J.J., Tao, J., Li, N., Su, X.O., Chen, L.W.A., Wang, P., Shen, Z.X., Liu, S.X. and Dai, W.T. 2013. "Long-Term Trends in Visibility and at Chengdu, China". *Plos One* 8, 11.
- Xiao, Z.M., Zhang, Y.F., Hong, S.M., Bi, X.H., Jiao, L., Feng, Y.C. and Wang, Y.Q. 2011. "Estimation of the Main Factors Influencing Haze, Based on a Long-term Monitoring Campaign in Hangzhou, China". Aerosol and Air Quality Research 11, 873-882.
- Yang, L.X., Cheng, S.H., Wang, X.F., Nie, W., Xu, P.J., Gao, X.M., Yuan, C. and Wang, W.X. 2013. "Source identification and health impact of PM2.5 in a heavily polluted urban atmosphere in China". *Atmospheric Environment* 75, 265-269.
- Zhang, R.J., Cao, J.J., Lee, S.C., Shen, Z.X. and Ho, K.F. 2007.

- "Carbonaceous aerosols in PM10 and pollution gases in winter in Beijing". *Journal of Environmental Sciences-China* 19, 564-571.
- Zhao, W.C., Cheng, J.P., Li, D.L., Duan, Y.S., Wei, H.P., Ji, R.X. and Wang, W.H. 2013. "Urban ambient air quality investigation and health risk assessment during haze and non-haze periods in Shanghai, China". *Atmospheric Pollution Research* 4, 275-281.

#### **ACKNOWLEDGMENT**

We would like to thank the National Natural Science Foundation of China (Grant No. 21476191 and Grant No. 21676245), the Ministry of Science and Technology of China (Grant No. 2014BAC22B06) for financial support.