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ABSTRACT

Habitat preservation, conservation, and protection of threatened species require
careful site selection procedures. The presence of several site-selection models
encourages model assessments to determine their usefulness and functionality for
conservation purposes. Map model assessments are not conventionally conducted
between site selection models to understand the nature of their decision-making
strategies and prioritization. Therefore, the objective of this study was to determine
the relationship between a recently published site selection model, the Safe Zone
with MaxEnt, representing the Species Distribution Model, and the Forest Landscape
Integrity Index, representing an intact forest habitat. As expected, there was considerable
variation among the three models due to their different algorithms and themes of
concern; nevertheless, these had some level of agreement in selecting potential areas
for conservation. In addition, this study presented a convenient method for map data
collection and the analysis required for a comprehensive understanding of the model
agreements and relationships with other models. The nature of the decision making of
the Safe Zone model and its potential utility for selecting Strict Protection Zones was
presented. This study highlighted the intersection of geospatial analysis, conservation,
and model evaluation. Finally, study emphasized the importance of informed decision-
making in environmental planning and management through rigorous map assessment.
The limitations of this study include the varied pixel resolutions of global and local
maps, temporal predictions, and the fact that the models to which the SZ was compared
are limited to models and maps available in the area of interest.

Keywords: model evaluation; map comparison; category agreements; map model
relationships, safe zone for conservation
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Maps have become an essential tool in decision-
making (Farhan et al. 2017, Tao 2013; Fletcher
et al. 2015), especially with the advent of satellite
technology and the “virtual globe” (Sheppard and Cizek
2009). Decision makers rely on maps and Geographic
Information System (GIS) tools to designate geographic
areas for conservation (Harris and Hazen 2006).
Primarily used for navigation and territorial boundary
identification, maps are now used in countless ways by
every user. In the Philippines, the most common use is
for analysis and comparisons of land use and land cover,
similar to the study of A/madrones-Reyes and Dagamac
(2022), on the correlation between vegetation cover
and surface temperature. Geospatial data are processed
and analyzed in a multitude of ways to be used in every
human endeavor, as shown by Verburg et al. (2018) in a

book chapter, where they described a variety of modeling
approaches and indicated their strengths and weaknesses.
The usefulness of decisions dependent on spatial data
is as effective as map quality; thus, as early as 1981,
Fitzpatric-Lins introduced the idea of comparing
manual sampling with computer-based sampling
techniques. Meanwhile, Foody (2004) and Foody (2006)
introduced kappa coefficient analysis to compare maps.

In environmental conservation, species distribution
and habitat maps were used by Cabeza and Moilanen
(2003) and Onal (2004) as tools to select potential areas for
protection. Various conservation site selection methods
are commonly employed to identify the priority areas. The
widely-used conservation planning approaches include
Ecological Niche Modelling (ENM), which estimates the
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likelihood of species occurrence in specific conservation
areas (Peterson 2012; Ishihama, 2019); Ecosystem
Services approach prioritizes areas based on the value and
rank of ecosystem service they provide (Hummel 2019;
Scolozzi  2014); and species-based prioritization
which aims to conserve organisms with significant
conservation status (McGeoch 2016). Puno (2019) used
a stream drainage characterization strategy to select
priorities for sub-watershed conservation based on the
erosion potential. A customizable user-defined mapping
algorithm is featured in online Marxan software (Serra-
Sogas 2020). In the presence of several selection methods
introduced for environmental conservation, comparing
maps is a reasonable exercise for a comprehensive
analysis of the resulting map.

There are different ways to perform map comparisons
using different comparison measures (Stehman 1999).
Comparing maps allows us to assess the accuracy of the
classifications, methods, and analyses. (Foody 2013,
Moral 2010; Hagen-Zanker and Martens 2008, Herold
et al. 2008; Stehman 1999; Herold et al., 2008). Several
maps have also been compared to determine the dynamics
of the features over time (7abora et al. 2023 (a); Son et
al. 2015). Maps were also compared to describe features,
determine locations, and correct issues.

No map model assessments have been conducted
between site-selection models, particularly to understand
the nature of prioritization for selecting conservation
sites. New user-defined algorithm maps need to be
compared to other well-established models, with distinct
predispositions on the theme of their concern, to determine
how they make decisions to appreciate their usefulness
and functionality for conservation. The plausibility of the
map alone is not sufficient for describing the new models
being introduced as a decision-making tool. There is a
need to support the claims of relationships using statistical
tools to convince potential users of new mapping models.
By conducting map model assessments, this study can
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understand the resulting maps beyond their face values
alone but with a more rigorous validation process.

The process presented in this study is a practical
method for systematically evaluating the different
aspects of model performance using common reference
maps and statistical analyses to determine the agreements
and relationships of the models being assessed. Recently,
Tabora et al. (2023b) proposed the “Safe Zone” method
of selection and a map showing the potential area for
a Strict Protection Zone (SPZ) in a watershed in the
southern Philippines. The Safe Zone (SZ) model was
intended to augment the procedure of the Department
of Environment and Natural Resources (DENR) in site
selection, which is the focus of this study. The two models
used to compare the SZ model in this study were the
Maximum Entropy (MaxEnt) Model by Phillips (2006)
and the Forest Landscape Integrity Index (Grantham
2020), which were also used as reference models to
suggest conservation sites. This study sought to address
the research question: Can model assessments provide a
deeper understanding of the context of a new model?

The objective of this study was to assess the
effectiveness of a newly developed mapping framework
model (SZ) alongside other commonly utilized site
selection models (FLII and Maxent). The study
emphasizes the importance of map assessments in
improving the understanding of the decision-making
process related to site selection, particularly when using
the newly developed model.

MATERIALS AND METHODS

The scheme started by describing how the three
ecological models for comparison were pre-processed and
extracted, followed by a description of sample collection
(Figure 1). The analyses started with descriptive
statistics, followed by agreement tests aimed at describing
how the three models assigned increasing categories

Safe Zone Pre-processing and

FLII Pre-processing and

Maxent Pre-processing and

synthesis synthesis synthesis
l ¥ b
S5Z map ‘ FLII map ‘ ‘ Maxent map |

“_‘_\_\_‘_“*

l

—

Sample ¢

ollection

.

| Comparati

ve analysis |

Figure 1. Schematic of the map comparison procedure.
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for conservation. Finally, statistical analyses were used
to present the relationships between the three models.

The study site was a candidate protected area (PA) in
the Southern Philippines, the Libungan River Watershed
and Forest Reserve (LWFR) (Figure 2). It covers 52,820
ha with headwaters in the north and drains its rivers
to the south towards the Ligawasan Marsh in Central
Mindanao, Philippines. Closed forest is concentrated
in the northern portion, covering 14% of the landscape.
Croplands cover approximately 70% of the landscape.
In the past 50 years, closed forests have decreased
at a rate of 1.21 K%, whereas croplands have been
increasing at a rate of 2.45 K% (Tabora et al. 2023a).
A zoning strategy was recommended in the reference
paper to be implemented in the landscape to preserve the
remaining forest while providing space for agricultural
production and other socioeconomic activities.

Ecological Models Pre-processing
The Safe Zone. This study adopted this section from the
methodological framework for Safe Zone determination

proposed by Tabora et al. (2023b) (Figure 3). The
study performed the suggested preliminary steps to
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Figure 2. The Libungan River Watershed and Forest
Reserve (LWFR) contours, drainage and
relative location in the Philippines.

synthesize the final SZ map. These steps involved
scoring weights per Land Use and Land Cover based on
a simplified scoring matrix to gauge the perceptions of
local informants and experts. Land Use and Land Cover
maps used in this study can be downloaded from figshare.
doi:10.6084/m9.figshare.23258987.v2 and figshare.
doi:10.6084/m9.figshare.23537772.v2  The scoring
of weights includes positive and negative values that
directly categorize the land-use type into factors (F) that
contribute to threatened species and forest conservation.

First, the factors identified as positively contributing
to conservation using key informant interviews (KII)
were assigned F+. The weights of Land Cover (LC) types,
such as closed forest, open forest, croplands, grasslands,
and savanna, were determined by the highest number
of threatened vertebrates per km? biodiversity survey of
(Tabora et al. 2023a). By assigning weights to LC, it was
converted to the Area of Habitat (AOH). Using QGIS,
the weights were multiplied by the F+ and AOH rasters,
making it the value of each map pixel (Equations 1 and 2).

Local Habitat of the Organism (LHO) =

(F+1 WKII) + (F+2WKH). . (F+nwKH) + AOH (1)
Where: F+ = factor identified as positively affecting
conservation
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Figure 3. Schematic diagram of the process in
synthesizing the ‘Safe Zone’ for threatened

species conservation.
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WKII=Weight based on Key Informant Interviews

AOH = (L, W5) + (L,W5)... (L, W%) )

Where L = Land cover type
WS = Weight based on the highest number of
threatened species recorded in a km? of land cover

type.

Following the equation above, were added and all
land-use types assigned as F+ and the AOH; the resulting
map is the Local Habitat of the Organism (LHO).

Second, maps that negatively contributed to
conservation were assigned as F~. The weights are
multiplied by the raster pixels of each map. All the F-
maps were combined by adding rasters in QGIS; this area
was called the Conservation Conflicted Areas (CCA)
(Equation 3).

The equation for attaining CCA is:
CCA=(F, WX + (F, WK (F WK 3)

Where: F- = factor identified as negatively affecting
conservation
WKI=Weight based on Key Informant Interviews

Finally, CCA (Equation 4) rasters were subtracted
from the LHO to synthesize the SZ. The Resulting SZ
map was reclassified and categorized from very suitable
to unsuitable, with an equal quantile of 100/5. The general
equation used for the final map of the Safe Zone is:

SZ=LHO - CCA (4)

The MaxEnt. The Maximum Entropy (MaxEnt) model
developed by Phillips (2006) is a machine learning
algorithm designed to predict the probability of occurrence
of species based on environmental variables. The Maxent
model is useful when species occurrence data are limited
or incomplete (Elith et al. 2011). It is based on predictions
of occurrence data, and the goal is to find a probability
distribution that maximizes entropy (i.e., the least
biased spot based on the available data). This strategy
enables MaxEnt to incorporate complex connections
between other variables (e.g., climate) despite the limited
number of occurrences. It is widely used in ecology
and conservation biology, with varying applications in
identifying areas of high conservation value and drivers
of species distribution and extinction. It is an open-
source software with a user-friendly interface that allows
researchers and practitioners to apply the model to their
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owndata(Pang 202 1; Malakoutikhah 2020; Avalos 2015).

This study preprocessed MaxEnt  Species
Distribution Model (SDM) maps using a reference list
of threatened species from the SZ. The list of organisms
was based on the Global Biodiversity Information
Facility, also known as GBIF (2021) data to increase the
number of records to the national level to increase the
efficacy of SDM (Rondinini 2006). The study excluded
species with insufficient GBIF data points to generate
significant contributions to the model projections. This
study further truncated the GBIF data by removing
samples older than 1990 years, preserved specimens, and
museum specimens. Sample points that fell beyond the
expected habitat (e.g., C. syrichta in built-up areas or on
the sea) were also removed from the GBIF data. It was
presumed that some data points in built-up areas were in
holding facilities, such as zoos, farms, and caged pets,
that did not represent their natural habitat. The 11 species
with sufficient samples and significant contributions
for the SDM inside LWFR are the following: Buceros
hydrocorax (Rufous hornbill), Basilornis mirandus (Apo
myna), Chloropsis flavipennis (Philippine leafbird),
Carlito syrichta (Philippine tarsier), Dicaeum anthonyi
(Yellow-crowned flowerpecker), Macaca fascicularis
(Philippine macaque), Otus mirus (Mindanao scops owl),
Penelopides affinis (Mindanao hornbill), Rhinomyias
goodfellowi (Slaty-backed jungle flycatcher), Sus
philippensis (Philippine warty pig), and Trichoglossus
johnstoniae (Mindanao lorikeet).

The following environmental factors were
downloaded from WorldClim (Fick 2017): annual
mean temperature, mean diurnal range, isothermality,
temperature seasonality (standard deviation x 100),
maximum temperature of the warmest month, minimum
temperature of the coldest month, annual temperature
range, mean temperature of wetter quarter, mean
temperature of driest month, mean temperature of
warmest quarter, mean temperature of coldest quarter,
annual precipitation, precipitation of wettest month,
precipitation of driest month, precipitation seasonality
(coefficient of wvariation), precipitation of wettest
quarter, precipitation of driest quarter, precipitation of
warmest quarter, and precipitation of coldest quarter.
Using Maxent’s Graphical User Interface (GUI) default
settings, this study generated the SDM for each species
(Pang et al. 2021)

This study normalized the pixel scores to within the
range of 0-100. The resulting normalized Philippine
distribution map of the species was cropped onto an
LWER polygon. The resulting SDM rasters are added to
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form a single MaxEnt SDM raster.

Each pixel of the final raster had total scores for the 11
species modeled. Note that he map generated by MaxEnt
extends up to the entire boundaries of the Philippine
archipelago; however, this study cropped the maps to the
LWEFR area to make them comparable to other models.
The resolution of the resulting map was reclassified
to 30 x 30 m to make it similar to the SZ. Suitability
was classified using five quantile intervals, where the
upper 20% was assigned as the ‘very suitable’ and the
lowest 20% was the ‘unsuitable’ to make it similar to the
classification used by SZ (Tabora et al. 2023b).

The FLII. The Forest Landscape Integrity Index (FLII)
integrates data on observed and inferred forest pressures
and lost forest connectivity to generate the first globally
consistent continuous index of humid forest integrity, as
determined by the degree of anthropogenic modification.
With cloud computing and massive datasets, FLII was the
first global initiative to quantify the ecological integrity of
forests. The study of Grantham (2020) showed that 40%
of the world’s forests have high integrity. Their outputs
were used by the Convention on Biological Diversity and
the Convention on Climate Change as references.

The Forest Landscape Integrity Index was
downloaded from their website (https://www.forest
landscapeintegrity.com/home) and cropped the LWFR
raster using QGIS. The FLII raster was reclassified to fita
resolution similar to that ofthe SZ (30 m x 30 m). Although
FLII was originally categorized as ‘high integrity’ to “low
integrity”” of forest, this study converted the classification
to ‘very suitable (highest 20%) and ‘unsuitable’ (lowest
20%) similar classification of Tabora et al. (2023b) with
the SZ and MaxEnt for uniformity. Simultaneously, the
raster pixel scores were normalized in the range of 0-100.

Data collection

The purposive sampling method covered all raster
surfaces at regular intervals with equal spacing withinthe
LWER polygon. Sampling points were generated in QGIS
vector research tools, establish fixed poin t intervals.
A distance of 300 x 300 m per sampling point was
established. This is 1/10 of the model maps’ actualraster
size of 30 x 30 pixels. This implies that the sample
size was approximately 10% of the total population of
pixels. A fixed interval was used to allow the samples to
efficiently represent the differences in the location and
area occupied by the tested map variables (Figure 4).

An average of £5,862 sampling points inside the

LWFR polygon using vector tools in QGIS was
established. These points were used to sample raster
pixel data. The resulting maps of the three models have
numerical values in their pixels. The sampling points
that landed on a specific pixel collected its value. The
numerical values were then converted to weighted
categorical values of 1-5 (1 = unsuitable, 5 = very
suitable). Different sets of data were collected from the
sampling points of the categorical maps. The samples
extracted from the shapefile points were transformed into
*_ asc files.

Data analysis

The classification of the SZ, FLII, and MaxEnt
models was compared by first normalizing the data
matrix. In addition to the three models, the presence-
absence data of the reference maps used in synthesizing
the SZ was included in the analysis.. The reference
maps were areas occupied by closed forest (clsdforst),
open forest (opnforst), cropland (crplnd), grassland
(grsind), alienable and disposable lands (A&D),
timberland (tmbrind), Certificate of Ancestral Domain
Title (CADT), Certificate of Land Ownership Awards
(CLOA), Integrated Social Forestry (ISF), Forest Land
Grazing Management Agreement (FLGMA), Network

Legend:
LULC Classification

Il Closed forest
Croplands

[ Open forest

[ Savanna/Grassland

Figure 4. Distribution of Sampling Points over Land-
use Land Cover Types with 2021 Land Cover
Classification as Background.
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of Protected Areas for Agriculture and Agro-Industrial
Development (NPAAD), and Strategic Agriculture and
Fisheries Development Zones (SAFD). This study also
sampled the Digital Elevation Model (DEM) and raw
slope values. The distance to roads (roads) and settlements
(stlmnt) was collected by determining the ‘distance to
hub’ value where the grid points were the reference, and
the hub was the converted lines to points of roads and
stimnt. Points near the hub had small values (in meters),
whereas points away from the hub had higher values.

Numerical data were used for the descriptive
statistics. The same data were used for correlation
analysis. Weighted categorical data were used in kappa
coefficient analyses. The overlap of map models was
visually inspected using the QGIS raster and vector tools.

Exploratory Spatial Data Analysis (ESDA) was
performed using GEODA software (Anselin 1995).
The ESDA allows patterns to be found from the data
to describe the spatial distribution and identify atypical
spatial observations. Parallel coordinate analysis was
used as a visual representation of the score distribution
of the three models. This shows variations in how each
model scores the same pixel.

The Scatter Plot matrix shows the pairwise
relationship between each model and another. The SZ
vector points extracted from the sampling points was
plotted in a Cartesian coordinate sytem against FLII and
MaxEnt vector points and vice-versa. This process was
performed using JASP statistical software (JASP Team
2023) standard procedures.

The JASP statistical software to analyze the kappa
coefficients, synthesize the correlation matrix, and
perform principal component analysis. Cohens’ Kappa
was used to analyze the agreement between the three
models. Fleiss’ kappa was used to reveal the agreements
or disagreements between the categories (1 to 5) in the
map models.

A Spearman correlation matrix was presented
to measure the strength and direction of the
linearrelationship of the models plus other landscape
features mentioned above (reference maps) for a better
understanding of how the different models decide.
This analysis was previously used by Paenen (2019)
and Ramachandra (2016) to elucidate the role of
anthropogenic forces in forest transitions, socio-economic
and bio-geophysical variables, and climatic zoning.

Principal Component Analysis (PCA) was used
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to present the patterns in the dataset. Promax oblique
rotation was set in the analysis to allow factors to correlate
and maximize interpretability by simplifying the factor
patterns. This analysis showed whether the models
belonged to the same group and how other landscape
features grouped themselves with the models. Farhan
et al. (2017) used PCA to examine the effectiveness of
morphometric parameters in a watershed prioritization
study.

The contextual explanation of the relationships
among geographic phenomena was discussed along with
a presentation of the analyses. The spatial distribution
of the categories identified in the mapping process was
described and compared repeatedly using different
analyses and graphical presentations. The produced maps
and analyses were examined and interpreted based on the
context of the landscape and their application as a tool
for selecting conservation areas for threatened species.

RESULTS AND DISCUSSION
Descriptive statistics

All models’ suitability classifications portray similar
locations of the ‘very suitable’ sites at the Northeastern
part of the Libungan River Watershed and Forest Reserve
(LWFR) landscape with few exemptions (Figure 5). The
Safe Zone (SZ) model showed its highest points within
the closed forest area but removed the areas devoid of
a forest, based on the LWFR land cover classification.
It also reduced the areas with land use intended for
socialized development. The Forest Landscape Integrity
Index (FLII), on the other hand, had sporadic variations in
scores along the landscape. MaxEnt shows a distinctive
classification of the ‘very suitable’ site placed mostly
within the closed forest, while the rest of the landscape
scores were low with smooth transitions.

Some sources of uncertainties may have caused
some of the variations in classification. For example, the
resolution of the three models varied but only resampled
to 30 x 30 m. The land cover classification of SZ and
FLII may have affected the accuracy of the base maps.
Finally, MaxEnt, being a probabilistic model, may have
some miscalculations due to very few presence points
and too many points that may cause autocorrelation.

To verify the locations of different classifications
over the SZ map (Figure 6), the study overlapped FLII
and Maxent over the SZ map. FLII’s very suitable site
of FLII is 50% wider than the very suitable site of SZ.
In addition, FLII also has suitable sites on the western
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Figure 5. Side-by-side comparison of spatial distribution of suitability categories for Safe Zone,
Forest Landscape Integrity Index, and MaxEnt in Libungan River Watershed and Forest
Reserve. Note: The black arrow emphasizes the location of ‘very suitable’ sites.

side of the watershed where closed forests are located.
On the other hand, MaxEnt’s very suitable site is
approximately 45% of the very suitable site of the SZ.
The ‘likely unsuitable’ areas for the MaxEnt occupies
‘unsuitable’ areas of SZ. These areas were the valley
areas of the LWFR, and the climatic conditions may
have influenced the MaxEnt classification hinted at by
the middle portion along the mountain range having
a different classification from the valleys (Table 1).

The extent of high categories (very suitable) is the
widest in FLII and the smallest in MaxEnt. The high
categories occupy the northern tip of the LWFR, where
most of the closed forests are located in FLII. In addition,
there are also some ‘very suitable’ categories in the
western middle part of the landscape based on FLII. Low
categories (unsuitable) were placed near the central part
of the watershed for FLII, with high similarity to SZ. The
central portion of the LWFR is occupied by cropland
landcover, and alienable and disposable land use
assignment. Meanwhile, the lower categories of Maxent
occupy most of the southern 70% of the landscape.

The extracted normalized values of each sampling
point (£5,862) were between 54 and 34 average
values for the three models. The distribution of scores
varied (Figure 7), where SZ tapered in the upper and
lowscores, the FLII ballooned on middle and lower
values, and the MaxEnt ballooned on the lower scores.
The narrow distribution of scores at the higher level of

A
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FLIT & MaxEnt
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Figure 6. A. Safe Zone as base (green) over Forest
Landscape Integrity Index; B. Safe Zone as
base (green) over MaxEnt.

MaxEnt signifies strict selection based on environmental
variables, leaving most of the landscape with low scores.
The variances in the pixel score distribution also indicate
a difference in the selected categories of each model.
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Table 1. Percent (%) area covered by each category for Safe Zone, Forest Landscape Integrity Index, and MaxEnt in
the Libungan River Watershed and Forest Reserve.

Category SZ FLII MaxEnt
% area(has) area(has) % area(has)

Very suitable 8.00 4,225.60 14.43 7,619.87 3.35 1,769.27
Suitable 26.93 14,224.43 20.04 10,587.23 7.47 3,945.72
Likely suitable 44.07 23,277.77 28.33 14,964.02 9.85 5,202.25
Likely unsuitable 20.00 10,564.00 0.07 38.17 66.75 35,255.51
Unsuitable 1.00 528.20 37.13 19,610.71 12.58 6,647.25
Total 100.00 52,820.00 100.00 52,820.00 100.00 52,820.00

Rater agreement test

Pixels were converted into five categorical values. Y il

The study used Cohen’s kappa weighted agreement test e, i

with a confidence interval of 95%. This was to understand -

how each model agrees with the other models (Table

2). SZ had a stronger agreement with FLII than with

MaxEnt. This result may have caused by the similarities Total Tota Total

of patchiness of SZ and FLII categorization in LWFR
while the MaxEnt’s categorization is almost monotonous
in almost 80% of the landscape.

Fleiss> Kappa shows agreements among the
categories (Table 3). The highest agreement among the
three models was in category 5. This area represents
the suggested potential area of the SPZ. This means
that Maxent and FLII agree more with SZ in finding
the potential conservation area for threatened species,
but slightly agree on category 4 and very low or no
agreements on other categories.

Krippendorff’s alpha showed an overall agreement of
0.277, which is below the 0.60 standard for acceptable
agreement.

Relationship tests

Parallel  coordinate  analysis revealed the
distributionof the same sampling points in the three
models (Figure 8). Variances were also present based on
high angular lines, meaning that some samples for SZ
were scored differently in the other models. The polarity
of high scores (red line equivalent to >87) on the right
side (Figure 8) represents a substantial similarity of the
three models; however, some points were scored lower
by FLII, and Maxent was represented by high angular
lines pointing towards the left of the graph. the selection
of the ‘very suitable’ has high similarity (red lines) with
FLII but is reduced in volume with Maxent. This result
is a validation of the high similarity of ‘very suitable’
areas of all three map models. Meanwhile, the second
level (70-80 scores) for SZ was mostly rated similarly to

Figure 7. Boxplot distribution of Libungan River
Watershed and Forest Reserve sample points
from the Safe Zone, Forest Landscape Integrity
Index, and MaxEnt models.

Table 2. Cohen’s weighted Kappa of Safe Zone, Forest
Landscape Integrity Index, and Maxent in the
Libungan River Watershed and Forest Reserve.

Ratings Weighted | Agreement | Lower | Upper
Kappa
Average Kappa 0.402 Moderate
SZ - MaxEnt 0.333 Fair 0.315 | 0.351
SZ - FLII 0.410 Moderate | 0.392 | 0.428
MaxEnt - FLII 0.463 Moderate | 0.443 | 0.483
ote. 5851 1tems and 3 rafters.

Confidence intervals (95%) are asymptotic

Table 3. Fleiss’ Kappa agreement between the categories
of the Safe Zone, Forest Landscape Integrity
Index, and Maxent in the Libungan River

Watershed and Forest Reserve
Ratings Fleiss’ | Agreement | Lower | Upper
Kappa
Overall 0.016 Fair 0.008 | 0.024
1 - Unsuitable -0.074 No -0.089 | -0.059
2 - Likely -0.072 No -0.087 | -0.057
unsuitable
3 - Likely suitable | -0.030 No -0.045 | -0.015
4 - Suitable 0.107 Fair 0.092 | 0.122
5 - Very suitable 0.491 | Moderate | 0.476 | 0.506

Note. 5851 items and 3 raters.
Confidence intervals (95%) are asymptotic

FLII but placed in the lower 20 for Maxent.

Most of the SZ pixel scores in the range of 50-70 were
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Figure 8. Parallel coordinate plot comparison of the Safe Zone, Forest Landscape Integrity Index, and Maxent models

using 5 quantile classification.

scored from 1 to ~80 by FLII and were usually scored
from 10 to 40 by MaxEnt. The SZ pixels with scores of
50 and below were mostly scored by FLII at around <10
and by MaxEnt at 10-30.

Based on the scatter plot matrix (Figure 9), the SZ is
slightly more related to MaxEnt (0.6) than to FLII (0.5).
SZ has deviations in the lower scores with MaxEnt, but
runs along the projection from approximately 30 % and
up. While FLII has its deviations from the projection
atthe upper 30%, the amplitude is higher than MaxEnt’s.
This means that SZ and MaxEnt are more similar in
selecting the ‘very suitable’ habitat than FLII. The SZ
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and FLII were more similar in the lower categories.

The FLII is more related to SZ than to MaxEnt (0.4).
FLII and MaxEnt had their greatest deviation at the lower
20% and slightly more sample deviations at higher pixel
scores. The FLII and SZ, with a strong amplitude of
difference, have lower and higher scores, respectively.

MaxEnt is more related to SZ (0.6) than to FLII (0.4).
As previously described, the most remarkable difference
between the two models is the lower portion of the
scores,whereas the FLII varies more with MaxEnt at the
higher level of scores.
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Figure 9. Scatter Plot Matrix and Histograms Showing Pairwise Relationships for Safe
Zone, Forest Landscape Integrity Index, and MaxEnt models..
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Spearman correlation (Figure 10) showed that SZ
was more correlated to FLII than MaxEnt, MaxEnt was
more correlated to SZ than to FLII, and FLII was more
correlated to SZ than MaxEnt. The analysis of the other
LU maps in the landscape, it showed that, the SZ is highly
correlated with increasing distance from settlements
and roads. This means that the ‘highly suitable’ areas
of the SZ model are located farther from roads and
settlements. The high correlation of SZ to DEM shows
that the higher scores in the SZ classification are also
located at high elevations, and even if the SZ equations
do not include elevation, most of the closed forests in
the LWFR landscape are located at higher elevations,
which influences the SZ x DEM relationship. The high
correlation of SZ to timberland was possible because
the highly suitable areas were exclusively located in
the Timberland land-use classification of LWFR. The
SZ was negatively correlated with croplands, Alienable
and Disposable lands (A and D), Strategic Agriculture
and Fisheries Development Zones (SAFDZ), and
Certificate of Ancestral Domain Title (CADT). Although
the algorithm used by SZ declared that croplands have a
positive low score value (+2) as habitat, its location that
overlaps with the negatively classified A and D, roads,
settlements and CADT resulted in the downgrading of
most cropland scores.

Model Asessment for Map Performance Evaluation

As expected, FLII decisions have a positive
relationship with Land Use Land Cover (LULC), which
contains and supports forest conservation. For example,
croplands have the strongest negative relationship with
FLII due to the low density of trees; A and D are land use
types intended for settlement and development; CADT
areas in this watershed were used for croplands; and
Forest Land Grazing Management Agreement (FLGMA)
has limited trees because land use is intended for grazing
animals and pasture lands.

MaxEnt was negatively correlated with open forests,
croplands, and grasslands. This does not mean that the
threatened species in the models are not found in those
habitats, but the pattern shows that the pixels of MaxEnt
go down in locations of open forest, cropland, and
grasslands. MaxEnt’s relationship was also negative for
A and D, CADT, FLGMA, and SAFD. Climatic factors
might have affected the relationship between MaxEnt’s
very suitable area and the Land Use and Land Cover
mentioned above.

Local maps were included in the analysis to provide
a proper understanding of the landscape and the models.
Nevertheless, the result presentation was limited to
important land-use maps. For instance, closed forests
were highly correlated with SZ, FLII, and Maxent,

Spearman Correlations

SL FLI MaxEnt | clsdforst | Opnforst | crpind grsind slope DEM roads stimnt A&D tmbrind CADT CLOA ISF FLGMA | NPAAD |[SAFD
SZ -
FLI 0.537 ¥**[—
MaxEnt | 0.394 ***| 0326 ***[—
clsdforst | 0.583 ***| 0.547 ¥**| 0.583 ***|—
Opnforst | 0.125 ¥**| 0.146 ***{-0.041 ** | -0.087 ***|—
crpind [ -0.587 *¥¥| -0.466 *¥¥*|-0.354 **¥| -0.507 ***| -0.434 *** -
grsind 0.138 ***( -0.021 -0.051 ¥¥¥| 0,147 ¥¥* [ 0,128 *¥¥| -0.473 *** [—
slope 0336 *¥¥[ 0258 ***[ 0.043 ¥¥*| 0,107 ***| 0,143 ¥¥*] -0.255 ***| 0,141 ¥¥*|—
DEM 0.664 **¥*[ 0413 ***[ 0.581 ***| 0,586 ***| 0.097 ¥**| -0473 **| 0.012 0.26 ¥¥*|—
roads 0.665 *¥¥[ 0524 ***[ 0345 *¥¥*| 0,473 ***| 0,135 ¥¥*| -0497 ***| 0.118 ¥¥¥| 0313 ***| 0362 ***|—
stimnt 0.759 *¥*¥[ 0515 ***[ 0.434 ¥¥*| 0,508 ***| 0,18 ¥¥*| -0.574 ***| 0,163 ¥¥¥| 0321 ***| 0,615 ***| 0.693 ¥**|—
A&D -0.762 ¥¥¥| -0.381 ¥¥¥|-0.247 ¥¥¥|  -0.313 ¥¥¥| -0.223 ¥¥*F[ 0.448 ¥F¥| 0,142 ¥*¥¥[ -0.38 ¥¥¥| -0.593 *¥¥ | -0.441 *** | 0,557 ¥¥¥|—
tmbrind | 0757 ¥¥¥| 038 ***| 0.247 ¥ 0313 ***| 0,221 ¥**[ -0441 ***| 0,141 ***| 0385 ***| 0.596 ***| 0.435 ***| 0557 ***| -0.978 ¥**(—
CADT | -0.287 ***| -0.157 **¥|-0.044 ¥**[ -0.189 ***[ -0.077 ¥**| 0101 ***| 0.118 ¥**| -0.04 ** | -0.469 ***| 0.226 ¥**[-0.149 ***| 0212 ¥**| -0.22 ***|—
CLOA 0174 ¥%| 013 ¥*| 016 ***|  0.074 ¥¥*| 0.134 ***| -0.205 ¥¥*[ 0,123 ¥**| 0,159 ¥¥¥| 0.2 ***| 0.145 ***| 0.224 ¥¥*| -035 ***| 0,348 ***| -0,088 ***|—
ISF 01 ¥*( 0017 0173 #**| 0,009 0027* | 0.02 -0.056 ***| -0,001 0.161 ***| -0.034 ** | 0.012 0.02%%| 002 %% 0073 ¥¥*[-0001 |-
FLGMA [ 0.061 ***| -0.058 ***|-0.265 ***| -0.095 ¥**| 0,068 ***| -0.044 ***| 0.106 ***| 0.062 ***[-0.032* |-0.052 ***|-0.017  [-0.169 ***| 0.169 ***| -0.051 *** | -0.127 ***| -0.037 ** |—
NPAAD [ 0251 ***| 0231 **| 029**| 0315 ***| 0,065 ***|-0.269 ***| 0.004 0.093 ***| 0329 ***| 0.26 ***| 0285 ***| -0.186 ***|  0.1883 ***| -0.115 ***| 0.146 ***| -0.04 ** | -0.058 ***|—
SAFD | -0.106 ***| -0.073 ***|-0.184 ¥**| 0122 ***| 0012 0.094 ***| -0.031* | 0.094 ***|-0.078 ***| -0.204 ***| -0.158 ***| -0.212 ***| 0,205 ***| -0.06 ***| 0.055 ***| -0.047 ¥**| 0.058 ***| -0.074 ***|—

*p<.05, **p<.0, *** p< 001
Figure 10. Spearman correlation matrix showing the Safe

Zone, Forest Landscape Integrity Index, MaxEnt models,

and other references maps from the Libungan Watershed and Forest Reserve landscape closed forest
(clsdforst), open forest (opnforst), cropland (crplnd), grassland (grsind), alienable and disposable lands
(A&D), timberland (tmbrind), Certificate of Ancestral Domain Title (CADT), Certificate of Land Ownership
Awards (CLOA), Integrated Social Forestry (ISF), Forest Land Grazing Management Agreement (FLGMA),
Network of Protected Areas for Agriculture and Agro-Industrial Development (NPAAD), Strategic Agriculture
and Fisheries Development Zones (SAFD). Digital Elevation Model (DEM), slope values (slope), distance
to roads (roads) and distance to settlements (stimnt). Blue text= emphasis of the research (relationship of
SZ x FLII x MaxEnt); red text = negatively correlated maps to the three models.
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indicating similar priorities in the models. Conversely,
the open forest was weakly correlated with SZ and FLII
but negatively correlated with MaxEnt. All models
showed a negative correlation with croplands. Grassland
was weakly correlated with SZ because it considered the
presence of the survey results of two threatened species
persquare kilometer of grassland land cover classification.
Alienable and disposable areas are the landscape’s leading
areas for agriculture and infrastructure development;
they were negatively correlated to all models, but are
more robust to SZ and less robust to MaxEnt. CADT and
SAFD were also weakly correlated in all three models.
The increasing distance of roads and settlements increases
with the classification scores of the models; this means

FLGMA
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that suitability is higher at points farther away from the
roads and settlements, and the reverse is to A&D.

The PCA resulted in six components (Figure 11)
based on the eigenvalue. The component-loading table
shows the contributions of these variables. At the
same time, the component correlation figure showed
the strength of the relationship between principal
components. The directions of these relationships are
indicated by green arrows for positive connections and
red arrows for negative relationships, while the line
thickness represents the strength of the relationship. The
study focused on component 1 (RC1), which contains the
three models being compared.

Component Loadings
RC1 RC2 RC3 RC4& RCS RC6 Unigueness
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ISF

tmbrind

slope

SAFD
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DEM 0.85 0.2456
FLGMA 0.343
ISF 0.502
NPAAD 0.7
Opnforst 0.057
SAFD 0.371
cisdforst 0.261
crpind 0.181
grsind 0.131
roads 0.163
slope 0.6
stimnt 0.175
tmbrind 0.111

0.91 . .
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Figure 11. The relationships of the principal components (circles) and variables
(boxes). Note that: Green are positive relationships, while red are negative
relationships. Wider arrows = higher loading. Values of component loadings
and the correlations are shown in the inset tables. RC = relation component,
closed forest (clsdforst), open forest (opnforst), cropland (crplnd), grassland
(grsind), alienable and disposable lands (A&D), timberland (tmbrind),
Certificate of Ancestral Domain Title (CADT), Certificate of Land Ownership
Awards (CLOA), Integrated Social Forestry (ISF), Forest Land Grazing
ManagementAgreement(FLGMA), Network of Protected Areas forAgriculture
and Agro-Industrial Development (NPAAD), Strategic Agriculture and
Fisheries Development Zones (SAFD). Digital Elevation Model (DEM), slope
values (slope), distance to roads (roads) and distance to settlements (stimnt).
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The three models were loaded in RC1, together with
closed forests, areas far from roads and settlements, and
higher elevations. These landscape components were the
determining factors for the three LWFR models. All other
land cover types (grassland, open forest, and cropland) and
A and D had a negative relationship with RC1. MaxEnt
has the greatest load in RC1 among the three models,
whereas SZ shares its load with RC2. The RC2 group
comprises SAFD and Timberland, with a strong negative
loading on A&D. This is because the ‘very suitable’
area of the SZ favors closed forests. SAFD is located
in the closed forest in LWFR; the timberland contains
a closed forest; in contrast, A&D has no closed forest.

Map comparison

The maps compared in this study are all used as a basis
for suggesting conservation sites. However, different
algorithms and thematic objectives were used. The
map comparison exercise revealed that all three models
exhibited similar decision-making by having a similar
location of “very suitable” areas in the landscape (at the
northern end of the watershed). The moderate agreement
between the maps is understandable because each model
has different objectives in identifying categories. The
low agreement in the lower categories (1 to 4) greatly
affected Krippendorff’s alpha. Those lower categories
are less critical than category 5 because, in the search for
a potential SPZ or a CH, the highest category is the only
choice, while other areas will only fall in management
areas or be removed from protected areas. This study
only chose the highest category because it aligns with
the TUCN’s description of a protected area, that is,
essential for biodiversity conservation, functioning
natural ecosystems, and refuge of species (Dudley 2008).
The remaining lower categories have the potential to be
disturbed in the future.

It should be noted that FLII is biased towards forest
cover (Grantham 2020), while Maxent is biased towards
species distribution (Phillips 2006); thus, the agreement
is expected to be not ‘near perfect (1.0)’. However,
this exercise revealed that the SZ, as a new selection
methodological framework, is leaning towards the
decisions of forest cover compared to species distribution.

Since the MaxEnt’s contributory factors are limited
to the climatic parameters, it depicts that the SZ model
is inclined to identify potential habitats of the species of
concern based on climatic conditions or the “bioclimatic
envelope model”; in this paper, the 13 threatened species
list of LWFR (Tabora et al. 2023). The smooth transitions
of the MaxEnt model correspond with climatic change

Model Asessment for Map Performance Evaluation

as the elevation increases in the north, and wind patterns
and temperature patterns are affected by global systems.
The resulting map of SZ covers 100% of the bioclimatic
envelope produced by MaxEnt SDM, making the SZ
decision relevant to threatened species conservation.
As mentioned by Rose and Burton (2009), bioclimatic
envelopes follow the ecological niche principle, which
describes speciesdistributionbased on climatic conditions.
Meanwhile, the FLII downloaded data removes areas
without intact forests or places them in a lower category.

The SZ, on the other hand, had large patches that
are affected by different layers of land-use types with
different weight scores. Because the SZ algorithm used
12 land use types, these combinations were patchy.
This study noted that some closed forest areas were
removed from the highest suitability category because
of an overlap with a negative conservation value; in this
case, the CLOA areas. The negative value of CLOA is
caused by the notion that CLOAs are open to agricultural
activities, such as palm oil plantations in Southeast Asia
(Colchester et al. 2011).

The intactness of the closed forest in the area selected
by the SZ model is incidental; this result may not occur
if the LULCs used are fragmented and intersecting.
The intactness factor, however, can be included in the
categorization process if stakeholders desire this feature
to make it intentional. The intactness of a habitat is an
important factor that is used as an indicator of ecosystem
health (Scholes and Biggs 2005).

All the models were selected for high elevations.
This may also be incidental, because the land cover
with the highest score is a closed forest located at higher
elevations. As found by Mallari et al. (2015), most of
the low elevations were designated for ‘multiple use
zone’ (Mallari et al. 2015). The geomorphology was
not included in the algorithms of the three models. The
authors expected that decision-making may differ if the
models are used in areas with intact lowland forests.

The smaller space assigned by the MaxEnt model
does not necessarily mean that it is an inferior model;
rather, it shows the limitations of climatic parameters in
selecting conservation sites. The broader areas assigned
by FLII represent land cover with intact forest, which
does not mean that it is superior to other models. The
purpose of the comparison is not to determine which
model is superior but rather to understand the nature of the
decision-making of the SZ methodological framework.

The relationship of land cover is more potent with the
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SZ model because the forest has the highest importance
weights in the SZ algorithm because of the multiplier
effect of the number of endangered species found in
it. The SZ’s most desirable area is smaller than that of
FLII by deducting areas with existing development plans
from potential areas for conservation. This also means
that the SZ responds more to the local situation, which is
essential for management and monitoring.

Although MaxEnt and FLII are designed for global
applications with coarser resolutions, SZ requires
fine-grained local information and may not be readily
applicable on a global scale. The capacity of the SZ
model for future projections has not yet been tested,
although several authors have used MaxEnt to predict
potential species habitat changes (Wei et al. 2018).

The SZ map used local perceptions, the best available
maps, and LULC to determine a potential conservation
area. The best available maps were reliable maps
provided by appropriate and authorized agencies. The
SZ’s user-defined algorithm includes the four major land
cover types and places more weight on the land cover
that houses more threatened species. The impact of this
algorithm is evident when comparing the SZ model with
the MaxEnt and FLII models.

The three models’ imperfect fit of the ‘very suitable’
area is caused by several factors such as pixel resolution,
variance in land cover base data, local land use maps
used by SZ mode, and the importance weights for the SZ
model. The relationship between SZ and MaxEnt signifies
its plasticity toward species distribution, whereas its
relationship with FLII also signifies its disposition for
closed forest habitats.

While the global models provide an overview of the
wider regions and landscapes, the local map synthesis,
such as the SZ, provides a higher relationship to factors
that affect habitats in the landscape. SZ also has a higher
repulsion to vital land use types that are important for
locals for development and socio-economic activities.
The SZ approach facilitates the effective management
of candidate protected areas. In economically challenged
nations, the imperatives of conservation and development
must advance in tandem to ensure sustainable progress
(Brown 2003). As concluded by Omoding et al. (2020),
stakeholder perceptions can significantly improve
management.

CONCLUSION AND RECOMMENDATIONS

The map model assessment study yielded valuable

insights into the performance and applicability of the new
user-defined algorithm in the context of conservation
decision-making. The comparison between SZ, FLII,
and MaxEnt sheds light on the decision-making process
of the SZ, that is, it 1S more biased towards habitat
compared to species distributions. By contrasting their
outcomes, this study gained a deeper understanding of
how the new algorithm operates and where it diverges
from the established approaches. Cross-validation of the
map models using land use and land cover (LULC) data
provided crucial information regarding the accuracy and
reliability of the mapped areas. Understanding how well
the algorithm aligns with actual landscape features is
essential for effective conservation planning. Statistical
analysis provides quantitative values of the model
agreements and relationships.

Potential challenges in map model assessments
include the selection of models for comparison. The
sampling procedure was set at 30 x 30 m in this study
because the reference map for comparison used that
resolution size; however, when used with other models,
the resolution of the sampling points can be adjusted to
fit the models for comparison.

It is recommended that new site selection maps be
compared with standard models to clarify their usefulness
and applicability. In the Philippine context, where the
traditional procedure of determining “forestlands” for
conservation relies heavily on the slope and elevation of
the landscape, this comparison procedure may provide
insight into how to understand the maps generated for
decision-making purposes.

Based on the model assessment, it is concluded that
the SZ model is a potential tool for selecting conservation
sites. The SZ model can also be compared with other
models not included in this study to further understand
its decision-making. The authors believe that the degree
of similarities and differences may vary if the three
algorithms are applied in a different area of concern and
if the temporal perspective is included in the models.

Further testing of the SZ strategy is recommended
for other protected area zoning in the Philippines. Some
modifications may be applied based on the available data
and purpose of the selection process. The method can
also be tested to select potential biodiversity corridors
connecting Protected Areas or Key Biodiversity Areas.
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