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ABSTRACT

Habitat preservation, conservation, and protection of threatened species require 
careful site selection procedures. The presence of several site-selection models 
encourages model assessments to determine their usefulness and functionality for 
conservation purposes. Map model assessments are not conventionally conducted 
between site selection models to understand the nature of their decision-making 
strategies and prioritization. Therefore, the objective of this study was to determine 
the relationship between a recently published site selection model, the Safe Zone 
with MaxEnt, representing the Species Distribution Model, and the Forest Landscape 
Integrity Index, representing an intact forest habitat. As expected, there was considerable 
variation among the three models due to their different algorithms and themes of 
concern; nevertheless, these had some level of agreement in selecting potential areas 
for conservation. In addition, this study presented a convenient method for map data 
collection and the analysis required for a comprehensive understanding of the model 
agreements and relationships with other models. The nature of the decision making of 
the Safe Zone model and its potential utility for selecting Strict Protection Zones was 
presented. This study highlighted the intersection of geospatial analysis, conservation, 
and model evaluation. Finally, study emphasized the importance of informed decision-
making in environmental planning and management through rigorous map assessment. 
The limitations of this study include the varied pixel resolutions of global and local 
maps, temporal predictions, and the fact that the models to which the SZ was compared 
are limited to models and maps available in the area of interest.

Keywords: model evaluation; map comparison; category agreements; map model 
relationships; safe zone for conservation

INTRODUCTION

Maps have become an essential tool in decision-
making (Farhan et al. 2017; Tao 2013; Fletcher 
et al. 2015), especially with the advent of satellite 
technology and the “virtual globe” (Sheppard and Cizek 
2009). Decision makers rely on maps and Geographic 
Information System (GIS) tools to designate geographic 
areas for conservation (Harris and Hazen 2006).
Primarily used for navigation and territorial boundary 
identification, maps are now used in countless ways by 
every user. In the Philippines, the most common use is 
for analysis and comparisons of land use and land cover, 
similar to the study of  Almadrones-Reyes and Dagamac 
(2022), on the correlation between vegetation cover 
and surface temperature. Geospatial data are processed 
and analyzed in a multitude of ways to be used in every 
human endeavor, as shown by Verburg et al. (2018) in a
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book chapter, where they described a variety of modeling 
approaches and indicated their strengths and weaknesses. 
The usefulness of decisions dependent on spatial data 
is as effective as map quality; thus, as early as 1981, 
Fitzpatric-Lins introduced the idea of comparing 
manual sampling with computer-based sampling 
techniques. Meanwhile, Foody (2004) and Foody (2006) 
introduced kappa coefficient analysis to compare maps. 

In environmental conservation, species distribution 
and habitat maps were used by Cabeza and Moilanen 
(2003) and Önal (2004) as tools to select potential areas for 
protection. Various conservation site selection methods 
are commonly employed to identify the priority areas. The 
widely-used conservation planning approaches include 
Ecological Niche Modelling (ENM), which estimates the 
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likelihood of species occurrence in specific conservation 
areas (Peterson 2012; Ishihama, 2019); Ecosystem 
Services approach prioritizes areas based on the value and 
rank of ecosystem service they provide (Hummel 2019; 
Scolozzi 2014); and species-based prioritization 
which aims to conserve organisms with significant 
conservation status (McGeoch 2016). Puno (2019) used 
a stream drainage characterization strategy to select 
priorities for sub-watershed conservation based on the 
erosion potential. A customizable user-defined mapping 
algorithm is featured in online Marxan software (Serra-
Sogas 2020). In the presence of several selection methods 
introduced for environmental conservation, comparing 
maps is a reasonable exercise for a comprehensive 
analysis of the resulting map. 

There are different ways to perform map comparisons 
using different comparison measures (Stehman 1999). 
Comparing maps allows us to assess the accuracy of the 
classifications, methods, and analyses. (Foody 2013; 
Moral 2010; Hagen-Zanker and Martens 2008; Herold 
et al. 2008; Stehman 1999; Herold et al., 2008). Several 
maps have also been compared to determine the dynamics 
of the features over time  (Tabora et al. 2023 (a); Son et 
al. 2015). Maps were also compared to describe features, 
determine locations, and correct issues. 

No map model assessments have been conducted 
between site-selection models, particularly to understand 
the nature of prioritization for selecting conservation 
sites. New user-defined algorithm maps need to be 
compared to other well-established models, with distinct 
predispositions on the theme of their concern, to determine 
how they make decisions to appreciate their usefulness 
and functionality for conservation. The plausibility of the 
map alone is not sufficient for describing the new models 
being introduced as a decision-making tool. There is a 
need to support the claims of relationships using statistical 
tools to convince potential users of new mapping models. 
By conducting map model assessments, this study can

understand the resulting maps beyond their face values 
alone but with a more rigorous validation process.

The process presented in this study is a practical 
method for systematically evaluating the different 
aspects of model performance using common reference 
maps and statistical analyses to determine the agreements 
and relationships of the models being assessed. Recently, 
Tabora et al. (2023b) proposed the “Safe Zone” method 
of selection and a map showing the potential area for 
a Strict Protection Zone (SPZ) in a watershed in the 
southern Philippines. The Safe Zone (SZ) model was 
intended to augment the procedure of the Department 
of Environment and Natural Resources (DENR) in site 
selection, which is the focus of this study. The two models 
used to compare the SZ model in this study were the 
Maximum Entropy (MaxEnt) Model by Phillips (2006) 
and the Forest Landscape Integrity Index (Grantham 
2020), which were also used as reference models to 
suggest conservation sites. This study sought to address 
the research question: Can model assessments provide a 
deeper understanding of the context of a new model?

The objective of this study was to assess the 
effectiveness of a newly developed mapping framework 
model (SZ) alongside other commonly utilized site 
selection models (FLII and Maxent). The study 
emphasizes the importance of map assessments in 
improving the understanding of the decision-making 
process related to site selection, particularly when using 
the newly developed model.

MATERIALS AND METHODS

The scheme started by describing how the three 
ecological models for comparison were pre-processed and 
extracted, followed by a description of sample collection 
(Figure 1). The analyses started with descriptive 
statistics, followed by agreement tests aimed at describing 
how the three models assigned increasing categories

Model Asessment for Map Performance Evaluation

Figure 1. Schematic of the map comparison procedure.
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for conservation. Finally, statistical analyses were used 
to present the relationships between the three models. 

The study site was a candidate protected area (PA) in 
the Southern Philippines, the Libungan River Watershed 
and Forest Reserve (LWFR) (Figure 2). It covers 52,820 
ha with headwaters in the north and drains its rivers 
to the south towards the Ligawasan Marsh in Central 
Mindanao, Philippines. Closed forest is concentrated 
in the northern portion, covering 14% of the landscape. 
Croplands cover approximately 70% of the landscape. 
In the past 50 years, closed forests have decreased 
at a rate of 1.21 K%, whereas croplands have been 
increasing at a rate of 2.45 K% (Tabora et al. 2023a). 
A zoning strategy was recommended in the reference 
paper to be implemented in the landscape to preserve the 
remaining forest while providing space for agricultural 
production and other socioeconomic activities.

Ecological Models Pre-processing

The Safe Zone. This study adopted this section from the 
methodological framework for Safe Zone determination 
proposed by Tabora et al. (2023b) (Figure 3). The 
study performed the suggested preliminary steps to

synthesize the final SZ map. These steps involved 
scoring weights per Land Use and Land Cover based on 
a simplified scoring matrix to gauge the perceptions of 
local informants and experts. Land Use and Land Cover 
maps used in this study can be downloaded from figshare. 
doi:10.6084/m9.figshare.23258987.v2 and figshare. 
doi:10.6084/m9.figshare.23537772.v2 The scoring 
of weights includes positive and negative values that 
directly categorize the land-use type into factors (F) that 
contribute to threatened species and forest conservation.

First, the factors identified as positively contributing 
to conservation using key informant interviews (KII) 
were assigned F+. The weights of Land Cover (LC) types, 
such as closed forest, open forest, croplands, grasslands, 
and savanna, were determined by the highest number 
of threatened vertebrates per km2 biodiversity survey of  
(Tabora et al. 2023a). By assigning weights to LC, it was 
converted to the Area of Habitat (AOH). Using QGIS, 
the weights were multiplied by the F+ and AOH rasters, 
making it the value of each map pixel (Equations 1 and 2).

Local Habitat of the Organism (LHO) = 
	 (F+

1 W
KII) + (F+

2W
KII)… (F+

nW
KII) + AOH        (1)

Where:  F+ = factor identified as positively affecting 
conservation

Journal of Environmental Science and Management Vol. 27 No. 1 (June 2024)

Figure 2. The Libungan River Watershed and Forest 
Reserve (LWFR) contours, drainage and 
relative location in the Philippines.

Figure 3. Schematic diagram of the process in 
synthesizing the ‘Safe Zone’ for threatened 
species conservation. 
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own data (Pang 2021; Malakoutikhah 2020; Avalos 2015).  

This study preprocessed MaxEnt Species 
Distribution Model (SDM) maps using a reference list 
of threatened species from the SZ. The list of organisms 
was based on the Global Biodiversity Information 
Facility, also known as GBIF (2021) data to increase the 
number of records to the national level to increase the 
efficacy of SDM (Rondinini 2006). The study excluded 
species with insufficient GBIF data points to generate 
significant contributions to the model projections. This 
study further truncated the GBIF data by removing 
samples older than 1990 years, preserved specimens, and 
museum specimens. Sample points that fell beyond the 
expected habitat (e.g., C. syrichta in built-up areas or on 
the sea) were also removed from the GBIF data. It was 
presumed that some data points in built-up areas were in 
holding facilities, such as zoos, farms, and caged pets, 
that did not represent their natural habitat. The 11 species 
with sufficient samples and significant contributions 
for the SDM inside LWFR are the following: Buceros 
hydrocorax (Rufous hornbill), Basilornis mirandus (Apo 
myna), Chloropsis flavipennis (Philippine leafbird), 
Carlito syrichta (Philippine tarsier), Dicaeum anthonyi 
(Yellow-crowned flowerpecker), Macaca fascicularis 
(Philippine macaque), Otus mirus (Mindanao scops owl), 
Penelopides affinis (Mindanao hornbill), Rhinomyias 
goodfellowi (Slaty-backed jungle flycatcher), Sus 
philippensis (Philippine warty pig), and Trichoglossus 
johnstoniae (Mindanao lorikeet). 

The following environmental factors were 
downloaded from WorldClim (Fick 2017): annual 
mean temperature, mean diurnal range, isothermality, 
temperature seasonality (standard deviation × 100), 
maximum temperature of the warmest month, minimum 
temperature of the coldest month, annual temperature 
range, mean temperature of wetter quarter, mean 
temperature of driest month, mean temperature of 
warmest quarter, mean temperature of coldest quarter, 
annual precipitation, precipitation of wettest month, 
precipitation of driest month, precipitation seasonality 
(coefficient of variation), precipitation of wettest 
quarter, precipitation of driest quarter, precipitation of 
warmest quarter, and precipitation of coldest quarter. 
Using Maxent’s Graphical User Interface (GUI) default 
settings, this study generated the SDM for each species 
(Pang et al. 2021)

This study normalized the pixel scores to within the 
range of 0–100. The resulting normalized Philippine 
distribution map of the species was cropped onto an 
LWFR polygon. The resulting SDM rasters are added to 

WKII= Weight based on Key Informant Interviews

AOH = (L1W
S) + (L2W

S)… (LnW
S)                               (2)

Where L = Land cover type
WS = Weight based on the highest number of 
threatened species recorded in a km2 of land cover 
type.

Following the equation above, were added and all 
land-use types assigned as F+ and the AOH; the resulting 
map is the Local Habitat of the Organism (LHO).

Second, maps that negatively contributed to 
conservation were assigned as F−. The weights are 
multiplied by the raster pixels of each map. All the F- 
maps were combined by adding rasters in QGIS; this area 
was called the Conservation Conflicted Areas (CCA) 
(Equation 3). 

The equation for attaining CCA is: 

CCA = (F-
1 W

KII) + (F-
2W

KII)…(F-
nW

KII)		          (3)

Where: F- = factor identified as negatively affecting 
conservation

WKII= Weight based on Key Informant Interviews

Finally, CCA (Equation 4) rasters were subtracted 
from the LHO to synthesize the SZ. The Resulting SZ 
map was reclassified and categorized from very suitable 
to unsuitable, with an equal quantile of 100/5. The general 
equation used for the final map of the Safe Zone is:

SZ = LHO – CCA				            (4)

The MaxEnt. The Maximum Entropy (MaxEnt) model 
developed by Phillips (2006) is a machine learning 
algorithm designed to predict the probability of occurrence 
of species based on environmental variables. The Maxent 
model is useful when species occurrence data are limited 
or incomplete (Elith et al. 2011). It is based on predictions 
of occurrence data, and the goal is to find a probability 
distribution that maximizes entropy (i.e., the least 
biased spot based on the available data). This strategy 
enables MaxEnt to incorporate complex connections 
between other variables (e.g., climate) despite the limited 
number of occurrences. It is widely used in ecology 
and conservation biology, with varying applications in 
identifying areas of high conservation value and drivers 
of species distribution and extinction. It is an open-
source software with a user-friendly interface that allows 
researchers and practitioners to apply the model to their

Model Asessment for Map Performance Evaluation
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form a single MaxEnt SDM raster.

Each pixel of the final raster had total scores for the 11 
species modeled. Note that he map generated by MaxEnt 
extends up to the entire boundaries of the Philippine 
archipelago; however, this study cropped the maps to the 
LWFR area to make them comparable to other models. 
The resolution of the resulting map was reclassified 
to 30 x 30 m to make it similar to the SZ. Suitability 
was classified using five quantile intervals, where the 
upper 20% was assigned as the ‘very suitable’ and the 
lowest 20% was the ‘unsuitable’ to make it similar to the 
classification used by SZ (Tabora et al. 2023b). 

The FLII. The Forest Landscape Integrity Index (FLII) 
integrates data on observed and inferred forest pressures 
and lost forest connectivity to generate the first globally 
consistent continuous index of humid forest integrity, as 
determined by the degree of anthropogenic modification. 
With cloud computing and massive datasets, FLII was the 
first global initiative to quantify the ecological integrity of 
forests. The study of Grantham (2020) showed that 40% 
of the world’s forests have high integrity. Their outputs 
were used by the Convention on Biological Diversity and 
the Convention on Climate Change as references.

The Forest Landscape Integrity Index was 
downloaded from their website (https://www.forest 
landscapeintegrity.com/home) and cropped the LWFR 
raster using QGIS. The FLII raster was reclassified to fit a 
resolution similar to that of the SZ (30 m × 30 m). Although 
FLII was originally categorized as ‘high integrity’ to “low 
integrity’’ of forest, this study converted the classification 
to ‘very suitable (highest 20%) and ‘unsuitable’ (lowest 
20%) similar classification of Tabora et al. (2023b) with 
the SZ and MaxEnt for uniformity. Simultaneously, the 
raster pixel scores were normalized in the range of 0-100.

Data collection 

The purposive sampling method covered all raster 
surfaces at regular intervals with equal spacing withinthe 
LWFR polygon. Sampling points were generated in QGIS 
vector research tools, establish fixed poin t intervals. 
A distance of 300 × 300 m per sampling point was 
established. This is 1/10 of the model maps’ actualraster 
size of 30 × 30 pixels. This implies that the sample 
size was approximately 10% of the total population of 
pixels. A fixed interval was used to allow the samples to 
efficiently represent the differences in the location and 
area occupied by the tested map variables (Figure 4). 

An average of ±5,862 sampling points inside the

LWFR polygon using vector tools in QGIS was 
established. These points were used to sample raster 
pixel data. The resulting maps of the three models have 
numerical values in their pixels. The sampling points 
that landed on a specific pixel collected its value. The 
numerical values were then converted to weighted 
categorical values of 1–5 (1 = unsuitable, 5 = very 
suitable). Different sets of data were collected from the 
sampling points of the categorical maps. The samples 
extracted from the shapefile points were transformed into 
*. asc files. 

Data analysis

The classification of the SZ, FLII, and MaxEnt 
models was compared by first normalizing the data 
matrix. In addition to the three models, the presence-
absence data of the reference maps used in synthesizing 
the SZ was included in the analysis.. The reference 
maps were areas occupied by closed forest (clsdforst), 
open forest (opnforst), cropland (crplnd), grassland 
(grslnd), alienable and disposable lands (A&D), 
timberland (tmbrlnd), Certificate of Ancestral Domain 
Title (CADT), Certificate of Land Ownership Awards 
(CLOA), Integrated Social Forestry (ISF), Forest Land 
Grazing Management Agreement (FLGMA), Network

Journal of Environmental Science and Management Vol. 27 No. 1 (June 2024)

Figure 4. Distribution of Sampling Points over Land-
use Land Cover Types with 2021 Land Cover 
Classification as Background.



16
to present the patterns in the dataset. Promax oblique 
rotation was set in the analysis to allow factors to correlate 
and maximize interpretability by simplifying the factor 
patterns. This analysis showed whether the models 
belonged to the same group and how other landscape 
features grouped themselves with the models. Farhan 
et al. (2017) used PCA to examine the effectiveness of 
morphometric parameters in a watershed prioritization 
study.

The contextual explanation of the relationships 
among geographic phenomena was discussed along with 
a presentation of the analyses. The spatial distribution 
of the categories identified in the mapping process was 
described and compared repeatedly using different 
analyses and graphical presentations. The produced maps 
and analyses were examined and interpreted based on the 
context of the landscape and their application as a tool 
for selecting conservation areas for threatened species.

RESULTS AND DISCUSSION

Descriptive statistics

All models’ suitability classifications portray similar 
locations of the ‘very suitable’ sites at the Northeastern  
part of the Libungan River Watershed and Forest Reserve 
(LWFR) landscape with few exemptions (Figure 5). The 
Safe Zone (SZ) model showed its highest points within 
the closed forest area but removed the areas devoid of 
a forest, based on the LWFR land cover classification. 
It also reduced the areas with land use intended for 
socialized development. The Forest Landscape Integrity 
Index (FLII), on the other hand, had sporadic variations in 
scores along the landscape. MaxEnt shows a distinctive 
classification of the ‘very suitable’ site placed mostly 
within the closed forest, while the rest of the landscape 
scores were low with smooth transitions.

Some sources of uncertainties may have caused 
some of the variations in classification. For example, the 
resolution of the three models varied but only resampled 
to 30 × 30 m. The land cover classification of SZ and 
FLII may have affected the accuracy of the base maps. 
Finally, MaxEnt, being a probabilistic model, may have 
some miscalculations due to very few presence points 
and too many points that may cause autocorrelation.

To verify the locations of different classifications 
over the SZ map (Figure 6), the study overlapped FLII 
and Maxent over the SZ map. FLII’s very suitable site 
of FLII is 50% wider than the very suitable site of SZ. 
In addition, FLII also has suitable sites on the western

of Protected Areas for Agriculture and Agro-Industrial 
Development (NPAAD), and Strategic Agriculture and 
Fisheries Development Zones (SAFD).  This study also 
sampled the Digital Elevation Model (DEM) and raw 
slope values. The distance to roads (roads) and settlements 
(stlmnt) was collected by determining the ‘distance to 
hub’ value where the grid points were the reference, and 
the hub was the converted lines to points of roads and 
stlmnt. Points near the hub had small values (in meters), 
whereas points away from the hub had higher values. 

Numerical data were used for the descriptive 
statistics. The same data were used for correlation 
analysis. Weighted categorical data were used in kappa 
coefficient analyses. The overlap of map models was 
visually inspected using the QGIS raster and vector tools. 

Exploratory Spatial Data Analysis (ESDA) was 
performed using GEODA software (Anselin 1995). 
The ESDA allows patterns to be found from the data 
to describe the spatial distribution and identify atypical 
spatial observations. Parallel coordinate analysis was 
used as a visual representation of the score distribution 
of the three models. This shows variations in how each 
model scores the same pixel.  

The Scatter Plot matrix shows the pairwise 
relationship between each model and another.  The SZ 
vector points extracted from the sampling points was 
plotted in a Cartesian coordinate sytem against FLII and 
MaxEnt vector points and vice-versa. This process was 
performed using JASP statistical software (JASP Team 
2023) standard procedures. 

The JASP statistical software to analyze the kappa 
coefficients, synthesize the correlation matrix, and 
perform principal component analysis. Cohens’ Kappa 
was used to analyze the agreement between the three 
models.  Fleiss’ kappa was used to reveal the agreements 
or disagreements between the categories (1 to 5) in the 
map models.

A Spearman correlation matrix was presented 
to measure the strength and direction of the 
linearrelationship of the models plus other landscape 
features mentioned above (reference maps) for a better 
understanding of how the different models decide. 
This analysis was previously used by Paenen (2019) 
and Ramachandra (2016) to elucidate the role of 
anthropogenic forces in forest transitions, socio-economic 
and bio-geophysical variables, and climatic zoning.

Principal Component Analysis (PCA) was used

Model Asessment for Map Performance Evaluation
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side of the watershed where closed forests are located. 
On the other hand, MaxEnt’s very suitable site is 
approximately 45% of the very suitable site of the SZ. 
The ‘likely unsuitable’ areas for the MaxEnt occupies 
‘unsuitable’ areas of SZ. These areas were the valley 
areas of the LWFR, and the climatic conditions may 
have influenced the MaxEnt classification hinted at by 
the middle portion along the mountain range having 
a different classification from the valleys (Table 1). 

The extent of high categories (very suitable) is the 
widest in FLII and the smallest in MaxEnt. The high 
categories occupy the northern tip of the LWFR, where 
most of the closed forests are located in FLII. In addition, 
there are also some ‘very suitable’ categories in the 
western middle part of the landscape based on FLII. Low 
categories (unsuitable) were placed near the central part 
of the watershed for FLII, with high similarity to SZ. The 
central portion of the LWFR is occupied by cropland 
landcover, and alienable and disposable land use 
assignment. Meanwhile, the lower categories of Maxent 
occupy most of the southern 70% of the landscape.

The extracted normalized values of each sampling 
point (±5,862) were between 54 and 34 average 
values for the three models. The distribution of scores 
varied (Figure 7), where SZ tapered in the upper and 
lowscores, the FLII ballooned on middle and lower 
values, and the MaxEnt ballooned on the lower scores. 
The narrow distribution of scores at the higher level of 

MaxEnt signifies strict selection based on environmental
variables, leaving most of the landscape with low scores. 
The variances in the pixel score distribution also indicate 
a difference in the selected categories of each model.

Journal of Environmental Science and Management Vol. 27 No. 1 (June 2024)

Figure 5. Side-by-side comparison of spatial distribution of suitability categories for Safe Zone, 
Forest Landscape Integrity Index, and MaxEnt in Libungan River Watershed and Forest 
Reserve. Note: The black arrow emphasizes the location of ‘very suitable’ sites.

Figure 6. A. Safe Zone as base (green) over Forest 
Landscape Integrity Index; B. Safe Zone as 
base (green) over MaxEnt.
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Rater agreement test

Pixels were converted into five categorical values. 
The study used Cohen’s kappa weighted agreement test 
with a confidence interval of 95%. This was to understand 
how each model agrees with the other models (Table 
2). SZ had a stronger agreement with FLII than with 
MaxEnt. This result may have caused by the similarities 
of patchiness of SZ and FLII categorization in LWFR 
while the MaxEnt’s categorization is almost monotonous 
in almost 80% of the landscape.

Fleiss’ Kappa shows agreements among the 
categories (Table 3). The highest agreement among the 
three models was in category 5. This area represents 
the suggested potential area of the SPZ. This means 
that Maxent and FLII agree more with SZ in finding 
the potential conservation area for threatened species, 
but slightly agree on category 4 and very low or no 
agreements on other categories.

Krippendorff’s alpha showed an overall agreement of 
0.277, which is below the 0.60 standard for acceptable 
agreement.

Relationship tests

Parallel coordinate analysis revealed the 
distributionof the same sampling points in the three 
models (Figure 8). Variances were also present based on 
high angular lines, meaning that some samples for SZ 
were scored differently in the other models. The polarity 
of high scores (red line equivalent to >87) on the right 
side (Figure 8) represents a substantial similarity of the 
three models; however, some points were scored lower 
by FLII, and Maxent was represented by high angular 
lines pointing towards the left of the graph. the selection 
of the ‘very suitable’ has high similarity (red lines) with 
FLII but is reduced in volume with Maxent. This result 
is a validation of the high similarity of ‘very suitable’ 
areas of all three map models. Meanwhile, the second 
level (70-80 scores) for SZ was mostly rated similarly to 

FLII but placed in the lower 20 for Maxent. 

Most of the SZ pixel scores in the range of 50-70 were

Model Asessment for Map Performance Evaluation

Table 1. Percent (%) area covered by each category for Safe Zone, Forest Landscape Integrity Index, and MaxEnt in 
the Libungan River Watershed and Forest Reserve.

Category SZ FLII MaxEnt
% area(has) % area(has) % area(has)

Very suitable
Suitable
Likely suitable
Likely unsuitable
Unsuitable
Total

8.00
26.93
44.07
20.00
1.00

100.00

4,225.60
14,224.43
23,277.77
10,564.00

528.20
52,820.00

14.43
20.04
28.33
0.07
37.13
100.00

7,619.87
10,587.23
14,964.02

38.17
19,610.71
52,820.00

3.35
7.47
9.85
66.75
12.58
100.00

1,769.27
3,945.72
5,202.25
35,255.51
6,647.25
52,820.00

Figure 7. Boxplot distribution of Libungan River 
Watershed and Forest Reserve sample points 
from the  Safe Zone, Forest Landscape Integrity 
Index, and MaxEnt models.

Table 2. Cohen’s weighted Kappa of Safe Zone, Forest 
Landscape Integrity Index, and Maxent in the 
Libungan River Watershed and Forest Reserve.

Ratings Weighted 
Kappa

Agreement Lower Upper

Average Kappa
SZ - MaxEnt
SZ - FLII
MaxEnt - FLII

0.402
0.333
0.410
0.463

Moderate
Fair

Moderate
Moderate

0.315
0.392
0.443

0.351
0.428
0.483

Note.  5851 items and 3 raters. 
Confidence intervals (95%) are asymptotic

Table 3. Fleiss’ Kappa agreement between the categories 
of the Safe Zone, Forest Landscape Integrity 
Index, and Maxent in the Libungan River 
Watershed and Forest Reserve.

Ratings Fleiss’ 
Kappa

Agreement Lower Upper

Overall
1 - Unsuitable
2 - Likely 
     unsuitable
3 - Likely suitable
4 - Suitable
5 - Very suitable

0.016
-0.074
-0.072

-0.030
0.107
0.491

Fair 
No 
No 

No 
Fair

Moderate

0.008
-0.089
-0.087

-0.045
0.092
0.476

0.024
-0.059
-0.057

-0.015
0.122
0.506

Note.  5851 items and 3 raters. 
Confidence intervals (95%) are asymptotic
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and FLII were more similar in the lower categories. 

The FLII is more related to SZ than to MaxEnt (0.4). 
FLII and MaxEnt had their greatest deviation at the lower 
20% and slightly more sample deviations at higher pixel 
scores. The FLII and SZ, with a strong amplitude of 
difference, have lower and higher scores, respectively. 

MaxEnt is more related to SZ (0.6) than to FLII (0.4). 
As previously described, the most remarkable difference 
between the two models is the lower portion of the 
scores,whereas the FLII varies more with MaxEnt at the 
higher level of scores.

Journal of Environmental Science and Management Vol. 27 No. 1 (June 2024)

scored from 1 to ~80 by FLII and were usually scored 
from 10 to 40 by MaxEnt.  The SZ pixels with scores of 
50 and below were mostly scored by FLII at around <10 
and by MaxEnt at 10–30.  

Based on the scatter plot matrix (Figure 9), the SZ is 
slightly more related to MaxEnt (0.6) than to FLII (0.5). 
SZ has deviations in the lower scores with MaxEnt, but 
runs along the projection from approximately 30 % and 
up. While FLII has its deviations from the projection 
atthe upper 30%, the amplitude is higher than MaxEnt’s.  
This means that SZ and MaxEnt are more similar in 
selecting the ‘very suitable’ habitat than FLII. The SZ

Figure 8. Parallel coordinate plot comparison of the Safe Zone, Forest Landscape Integrity Index, and Maxent models 
using 5 quantile classification.

Figure 9. Scatter Plot Matrix and Histograms Showing Pairwise Relationships for Safe 
Zone, Forest Landscape Integrity Index, and MaxEnt models..
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As expected, FLII decisions have a positive 

relationship with Land Use Land Cover (LULC), which 
contains and supports forest conservation. For example, 
croplands have the strongest negative relationship with 
FLII due to the low density of trees; A and D are land use 
types intended for settlement and development; CADT 
areas in this watershed were used for croplands; and 
Forest Land Grazing Management Agreement (FLGMA) 
has limited trees because land use is intended for grazing 
animals and pasture lands. 

MaxEnt was negatively correlated with open forests, 
croplands, and grasslands. This does not mean that the 
threatened species in the models are not found in those 
habitats, but the pattern shows that the pixels of MaxEnt 
go down in locations of open forest, cropland, and 
grasslands. MaxEnt’s relationship was also negative for 
A and D, CADT, FLGMA, and SAFD. Climatic factors 
might have affected the relationship between MaxEnt’s 
very suitable area and the Land Use and Land Cover 
mentioned above. 

Local maps were included in the analysis to provide 
a proper understanding of the landscape and the models. 
Nevertheless, the result presentation was limited to 
important land-use maps. For instance, closed forests 
were highly correlated with SZ, FLII, and Maxent, 

Spearman correlation (Figure 10) showed that SZ 
was more correlated to FLII than MaxEnt, MaxEnt was 
more correlated to SZ than to FLII, and FLII was more 
correlated to SZ than MaxEnt. The analysis of the other 
LU maps in the landscape, it showed that, the SZ is highly 
correlated with increasing distance from settlements 
and roads. This means that the ‘highly suitable’ areas 
of the SZ model are located farther from roads and 
settlements. The high correlation of SZ to DEM shows 
that the higher scores in the SZ classification are also 
located at high elevations, and even if the SZ equations 
do not include elevation, most of the closed forests in 
the LWFR landscape are located at higher elevations, 
which influences the SZ × DEM relationship. The high 
correlation of SZ to timberland was possible because 
the highly suitable areas were exclusively located in 
the Timberland land-use classification of LWFR. The 
SZ was negatively correlated with croplands, Alienable 
and Disposable lands (A and D), Strategic Agriculture 
and Fisheries Development Zones (SAFDZ), and 
Certificate of Ancestral Domain Title (CADT). Although 
the algorithm used by SZ declared that croplands have a 
positive low score value (+2) as habitat, its location that 
overlaps with the negatively classified A and D, roads, 
settlements and CADT resulted in the downgrading of 
most cropland scores. 

Model Asessment for Map Performance Evaluation

SAFD
SZ —
FLII 0.537 *** —
MaxEnt 0.394 *** 0.326 *** —
clsdforst 0.583 *** 0.547 *** 0.583 *** —
Opnforst 0.125 *** 0.146 *** -0.041 ** -0.087 *** —
crplnd -0.587 *** -0.466 *** -0.354 *** -0.507 *** -0.434 *** —
grslnd 0.138 *** -0.021 -0.051 *** -0.147 *** -0.128 *** -0.473 *** —
slope 0.336 *** 0.258 *** 0.043 *** 0.107 *** 0.143 *** -0.255 *** 0.141 *** —
DEM 0.664 *** 0.413 *** 0.581 *** 0.586 *** 0.097 *** -0.473 *** 0.012 0.26 *** —
roads 0.665 *** 0.524 *** 0.345 *** 0.473 *** 0.135 *** -0.497 *** 0.118 *** 0.313 *** 0.362 *** —
stlmnt 0.759 *** 0.515 *** 0.434 *** 0.508 *** 0.18 *** -0.574 *** 0.163 *** 0.321 *** 0.615 *** 0.693 *** —
A&D -0.762 *** -0.381 *** -0.247 *** -0.313 *** -0.223 *** 0.448 *** -0.142 *** -0.38 *** -0.593 *** -0.441 *** -0.557 *** —
tmbrlnd 0.757 *** 0.38 *** 0.247 *** 0.313 *** 0.221 *** -0.441 *** 0.141 *** 0.385 *** 0.596 *** 0.435 *** 0.557 *** -0.978 *** —
CADT -0.287 *** -0.157 *** -0.044 *** -0.189 *** -0.077 *** 0.101 *** 0.118 *** -0.04 ** -0.469 *** 0.226 *** -0.149 *** 0.212 *** -0.22 *** —
CLOA 0.174 *** 0.13 *** 0.16 *** 0.074 *** 0.134 *** -0.205 *** 0.123 *** 0.159 *** 0.2 *** 0.145 *** 0.224 *** -0.35 *** 0.348 *** -0.088 *** —
ISF 0.1 *** 0.017 0.173 *** 0.009 0.027 * 0.02 -0.056 *** -0.001 0.161 *** -0.034 ** 0.012 -0.12 *** 0.12 *** -0.073 *** -0.001 —
FLGMA 0.061 *** -0.058 *** -0.265 *** -0.095 *** 0.068 *** -0.044 *** 0.106 *** 0.062 *** -0.032 * -0.052 *** -0.017 -0.169 *** 0.169 *** -0.051 *** -0.127 *** -0.037 ** —
NPAAD 0.251 *** 0.231 *** 0.29 *** 0.315 *** 0.065 *** -0.269 *** 0.004 0.093 *** 0.329 *** 0.26 *** 0.285 *** -0.186 *** 0.188 *** -0.115 *** 0.146 *** -0.04 ** -0.058 *** —
SAFD -0.106 *** -0.073 *** -0.184 *** -0.122 *** 0.012 0.094 *** -0.031 * 0.094 *** -0.078 *** -0.204 *** -0.158 *** -0.212 *** 0.205 *** -0.06 *** 0.055 *** -0.047 *** 0.058 *** -0.074 *** —

clsdforstMaxEntFLIISZ tmbrlnd CADT CLOA ISF FLGMA NPAAD
Spearman Correlations

* p < .05, ** p < .01, *** p < .001

Opnforst crplnd grslnd slope DEM roads stlmnt A&D

Figure 10. Spearman correlation matrix showing the Safe Zone, Forest Landscape Integrity Index, MaxEnt models, 
and other references maps from the Libungan Watershed and Forest Reserve landscape closed forest 
(clsdforst), open forest (opnforst), cropland (crplnd), grassland (grslnd), alienable and disposable lands 
(A&D), timberland (tmbrlnd), Certificate of Ancestral Domain Title (CADT), Certificate of Land Ownership 
Awards (CLOA), Integrated Social Forestry (ISF), Forest Land Grazing Management Agreement (FLGMA), 
Network of Protected Areas for Agriculture and Agro-Industrial Development (NPAAD), Strategic Agriculture 
and Fisheries Development Zones (SAFD). Digital Elevation Model (DEM), slope values (slope), distance 
to roads (roads) and distance to settlements (stlmnt). Blue text= emphasis of the research (relationship of 
SZ x FLII x MaxEnt); red text = negatively correlated maps to the three models.



21

indicating similar priorities in the models. Conversely, 
the open forest was weakly correlated with SZ and FLII 
but negatively correlated with MaxEnt. All models 
showed a negative correlation with croplands. Grassland 
was weakly correlated with SZ because it considered the 
presence of the survey results of two threatened species 
per square kilometer of grassland land cover classification. 
Alienable and disposable areas are the landscape’s leading 
areas for agriculture and infrastructure development; 
they were negatively correlated to all models, but are 
more robust to SZ and less robust to MaxEnt. CADT and 
SAFD were also weakly correlated in all three models. 
The increasing distance of roads and settlements increases 
with the classification scores of the models; this means 

that suitability is higher at points farther away from the
roads and settlements, and the reverse is to A&D.

The PCA resulted in six components (Figure 11) 
based on the eigenvalue. The component-loading table 
shows the contributions of these variables. At the 
same time, the component correlation figure showed 
the strength of the relationship between principal 
components. The directions of these relationships are 
indicated by green arrows for positive connections and 
red arrows for negative relationships, while the line 
thickness represents the strength of the relationship. The 
study focused on component 1 (RC1), which contains the 
three models being compared.

Journal of Environmental Science and Management Vol. 27 No. 1 (June 2024)

Figure 11. The relationships of the principal components (circles) and variables 
(boxes). Note that:  Green are positive relationships, while red are negative 
relationships. Wider arrows = higher loading. Values of component loadings 
and the correlations are shown in the inset tables. RC = relation component, 
closed forest (clsdforst), open forest (opnforst), cropland (crplnd), grassland 
(grslnd), alienable and disposable lands (A&D), timberland (tmbrlnd), 
Certificate of Ancestral Domain Title (CADT), Certificate of Land Ownership 
Awards (CLOA), Integrated Social Forestry (ISF), Forest Land Grazing 
Management Agreement (FLGMA), Network of Protected Areas for Agriculture 
and Agro-Industrial Development (NPAAD), Strategic Agriculture and 
Fisheries Development Zones (SAFD). Digital Elevation Model (DEM), slope 
values (slope), distance to roads (roads) and distance to settlements (stlmnt).
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The three models were loaded in RC1, together with 

closed forests, areas far from roads and settlements, and 
higher elevations. These landscape components were the 
determining factors for the three LWFR models. All other 
land cover types (grassland, open forest, and cropland) and 
A and D had a negative relationship with RC1. MaxEnt 
has the greatest load in RC1 among the three models, 
whereas SZ shares its load with RC2. The RC2 group 
comprises SAFD and Timberland, with a strong negative 
loading on A&D. This is because the ‘very suitable’ 
area of the SZ favors closed forests. SAFD is located 
in the closed forest in LWFR; the timberland contains 
a closed forest; in contrast, A&D has no closed forest. 

Map comparison 

The maps compared in this study are all used as a basis 
for suggesting conservation sites. However, different 
algorithms and thematic objectives were used. The 
map comparison exercise revealed that all three models 
exhibited similar decision-making by having a similar 
location of “very suitable” areas in the landscape (at the 
northern end of the watershed). The moderate agreement 
between the maps is understandable because each model 
has different objectives in identifying categories. The 
low agreement in the lower categories (1 to 4) greatly 
affected Krippendorff’s alpha. Those lower categories 
are less critical than category 5 because, in the search for 
a potential SPZ or a CH, the highest category is the only 
choice, while other areas will only fall in management 
areas or be removed from protected areas. This study 
only chose the highest category because it aligns with 
the IUCN’s description of a protected area, that is, 
essential for biodiversity conservation, functioning 
natural ecosystems, and refuge of species (Dudley 2008). 
The remaining lower categories have the potential to be 
disturbed in the future.

It should be noted that FLII is biased towards forest 
cover (Grantham 2020), while Maxent is biased towards 
species distribution (Phillips 2006); thus, the agreement 
is expected to be not ‘near perfect (1.0)’. However, 
this exercise revealed that the SZ, as a new selection 
methodological framework, is leaning towards the 
decisions of forest cover compared to species distribution. 

Since the MaxEnt’s contributory factors are limited 
to the climatic parameters, it depicts that the SZ model 
is inclined to identify potential habitats of the species of 
concern based on climatic conditions or the “bioclimatic 
envelope model”; in this paper, the 13 threatened species 
list of LWFR (Tabora et al. 2023). The smooth transitions 
of the MaxEnt model correspond with  climatic change

as the elevation increases in the north, and wind patterns 
and temperature patterns are affected by global systems. 
The resulting map of SZ covers 100% of the bioclimatic 
envelope produced by MaxEnt SDM, making the SZ 
decision relevant to threatened species conservation. 
As mentioned by Rose and Burton (2009), bioclimatic 
envelopes follow the ecological niche principle, which 
describes species distribution based on climatic conditions. 
Meanwhile, the FLII downloaded data removes areas 
without intact forests or places them in a lower category.

The SZ, on the other hand, had large patches that 
are affected by different layers of land-use types with 
different weight scores. Because the SZ algorithm used 
12 land use types, these combinations were patchy. 
This study noted that some closed forest areas were 
removed from the highest suitability category because 
of an overlap with a negative conservation value; in this 
case, the CLOA areas. The negative value of CLOA is 
caused by the notion that CLOAs are open to agricultural 
activities, such as palm oil plantations in Southeast Asia 
(Colchester  et al. 2011). 

The intactness of the closed forest in the area selected 
by the SZ model is incidental; this result may not occur 
if the LULCs used are fragmented and intersecting. 
The intactness factor, however, can be included in the 
categorization process if stakeholders desire this feature 
to make it intentional. The intactness of a habitat is an 
important factor that is used as an indicator of ecosystem 
health (Scholes and Biggs 2005).

All the models were selected for high elevations. 
This may also be incidental, because the land cover 
with the highest score is a closed forest located at higher 
elevations. As found by Mallari et al. (2015), most of 
the low elevations were designated for ‘multiple use 
zone’ (Mallari et al. 2015). The geomorphology was 
not included in the algorithms of the three models. The 
authors expected that decision-making may differ if the 
models are used in areas with intact lowland forests.

The smaller space assigned by the MaxEnt model 
does not necessarily mean that it is an inferior model; 
rather, it shows the limitations of climatic parameters in 
selecting conservation sites. The broader areas assigned 
by FLII represent land cover with intact forest, which 
does not mean that it is superior to other models. The 
purpose of the comparison is not to determine which 
model is superior but rather to understand the nature of the 
decision-making of the SZ methodological framework.

The relationship of land cover is more potent with the

Model Asessment for Map Performance Evaluation
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SZ model because the forest has the highest importance 
weights in the SZ algorithm because of the multiplier 
effect of the number of endangered species found in 
it. The SZ’s most desirable area is smaller than that of 
FLII by deducting areas with existing development plans 
from potential areas for conservation. This also means 
that the SZ responds more to the local situation, which is 
essential for management and monitoring. 

Although MaxEnt and FLII are designed for global 
applications with coarser resolutions, SZ requires 
fine-grained local information and may not be readily 
applicable on a global scale. The capacity of the SZ 
model for future projections has not yet been tested, 
although several authors have used MaxEnt to predict 
potential species habitat changes (Wei et al. 2018).

The SZ map used local perceptions, the best available 
maps, and LULC to determine a potential conservation 
area. The best available maps were reliable maps 
provided by appropriate and authorized agencies. The 
SZ’s user-defined algorithm includes the four major land 
cover types and places more weight on the land cover 
that houses more threatened species. The impact of this 
algorithm is evident when comparing the SZ model with 
the MaxEnt and FLII models. 

The three models’ imperfect fit of the ‘very suitable’ 
area is caused by several factors such as pixel resolution, 
variance in land cover base data, local land use maps 
used by SZ mode, and the importance weights for the SZ 
model. The relationship between SZ and MaxEnt signifies 
its plasticity toward species distribution, whereas its 
relationship with FLII also signifies its disposition for 
closed forest habitats. 

While the global models provide an overview of the 
wider regions and landscapes, the local map synthesis, 
such as the SZ, provides a higher relationship to factors 
that affect habitats in the landscape. SZ also has a higher 
repulsion to vital land use types that are important for 
locals for development and socio-economic activities.  
The SZ approach facilitates the effective management 
of candidate protected areas. In economically challenged 
nations, the imperatives of conservation and development 
must advance in tandem to ensure sustainable progress 
(Brown 2003). As concluded by Omoding et al. (2020), 
stakeholder perceptions can significantly improve 
management.

CONCLUSION AND RECOMMENDATIONS

The map model assessment study yielded valuable

insights into the performance and applicability of the new 
user-defined algorithm in the context of conservation 
decision-making. The comparison between SZ, FLII, 
and MaxEnt sheds light on the decision-making process 
of the SZ, that is, it is more biased towards habitat 
compared to species distributions. By contrasting their 
outcomes, this study gained a deeper understanding of 
how the new algorithm operates and where it diverges 
from the established approaches. Cross-validation of the 
map models using land use and land cover (LULC) data 
provided crucial information regarding the accuracy and 
reliability of the mapped areas. Understanding how well 
the algorithm aligns with actual landscape features is 
essential for effective conservation planning. Statistical 
analysis provides quantitative values of the model 
agreements and relationships. 

Potential challenges in map model assessments 
include the selection of models for comparison. The 
sampling procedure was set at 30 × 30 m in this study 
because the reference map for comparison used that 
resolution size; however, when used with other models, 
the resolution of the sampling points can be adjusted to 
fit the models for comparison. 

It is recommended that new site selection maps be 
compared with standard models to clarify their usefulness 
and applicability. In the Philippine context, where the 
traditional procedure of determining “forestlands” for 
conservation relies heavily on the slope and elevation of 
the landscape, this comparison procedure may provide 
insight into how to understand the maps generated for 
decision-making purposes. 

Based on the model assessment, it is concluded that 
the SZ model is a potential tool for selecting conservation 
sites. The SZ model can also be compared with other 
models not included in this study to further understand 
its decision-making. The authors believe that the degree 
of similarities and differences may vary if the three 
algorithms are applied in a different area of concern and 
if the temporal perspective is included in the models. 

Further testing of the SZ strategy is recommended 
for other protected area zoning in the Philippines. Some 
modifications may be applied based on the available data 
and purpose of the selection process. The method can 
also be tested to select potential biodiversity corridors 
connecting Protected Areas or Key Biodiversity Areas.
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