

Journal of Environmental Science and Management 22-2: 6-12 (December 2019) ISSN 0119-1144

Status of Mammals in the Expansion Sites of the Mt. Hamiguitan Range Wildlife Sanctuary, Mindanao, Philippines

ABSTRACT

Mt. Hamiguitan Range Wildlife Sanctuary is one of the biodiversity hotspots in the Mindanao faunal region, which is home to about 21 species of mammals. This study provides data on mammal assemblage and assessment on the added value of the ca. 2.99 km² MHRWS expansion sites to the already protected zone. Faunistic inventory and assessment documented 19 species of mammals belonging to 16 genera, eight families and five orders. This adds nine species to the previously reported mammals of Mt. Hamiguitan range making it a home to 30 species. Relatively low diversity of mammals (H'=0.615) in the expansion sites is attributed to poor soil resulting to low forest productivity and habitat loss due to mining, logging and shifting cultivation. This unique assemblage of vulnerable and endemic species of bats and mammals in Mt. Hamiguitan Range Wildlife Sanctuary expansion sites calls for more sampling effort and conservation strategies to maintain its bat and mammal assemblage.

Victor B. Amoroso^{1*} Alma B. Mohagan² Fulgent P. Coritico¹ Socorro H. Laraga² Noel E. Lagunday¹ Kim Lee B. Domingo¹ Ruel D. Colong³ Roy G. Ponce⁴

- ¹ Center for Biodiversity Research and Extension in Mindanao (CEBREM), and Department of Biology, Central Mindanao University, University Town, Musuan Bukidnon, Philippines
- ² Department of Biology, Central Mindanao University, University Town Musuan Bukidnon, Philippines
- ³ MHRWS-PASO, Department of Environment and Natural Resources, Davao Oriental Province, Philippines
- ⁴ Davao Oriental State College of Science and Technology, Davao Oriental, Philippines

Key words: biodiversity, species composition, diversity index, similarity index, threatened and endemic species

*Corresponding author: victorbamoroso@gmail.com

INTRODUCTION

The Philippines with its ca. 175 indigenous land mammal species and about 112 (64%) endemic species and 52 endangered species is perhaps with the greatest concentration of endemic mammals in the world (Heaney 1986, Heaney 1993, Heaney and Regalado 1998, Mittermeier et al. 1997, Oliver 1994, WCSP 1997) such high diversity is associated with its geological history due to the extent of Pleistocene islands, climatic variation and elevational gradients (Balete et al. 2009, Heaney 2002). The Philippines is a megadiversity country threatened by rapid rates of development with few strategies on maintaining its biodiversity (Tanalgo and Hughes 2018). The highest diversity are Greater Luzon and Greater Mindanao which each support several endemic species. Moreover, endangered species occur in all of the Philippine faunal regions. These areas were identified on the basis of distinctive animal life. The index of faunal endangerment ranks the Greater Negros-Panay faunal regions as most critical followed by Mindoro and Greater Luzon, Greater Mindanao, Greater Palawan, Sibuyan, Greater Sulu and the Batanes/Babuyan region (*Heaney 1993*). It was during the 1980s that the extent of rain-forest habitat destruction became apparent thus the need for biological diversity documentation and conservation (*Heaney and Tabaranza 2006a*). The documentation of new species in the past couple decades in the Philippines implies that mammal diversity was higher than had been believed (*Rickart et al. 2005, Heaney and Tabaranza 2006b, Heaney et al. 2006, Balete et al. 2008, Heaney et al. 2009*).

Mt. Hamiguitan Range Wildlife Sanctuary (MHRWS), Davao Oriental Province, Mindanao, is a protected area covering 68.34 km² with the maximum

elevation of 1,637 m above sea level (masl) characterized by a variety of vegetation types including a mossy pygmy forest (*Amoroso et al. 2009*). The pygmy forest inhabited by unique flora and fauna thus considered as hottest of the "hotspots" (*Ong et al. 2002*). The mountain is a UNESCO World Heritage Site, ASEAN Heritage Park and also a Mindanao Long Term Ecological Research (LTER) Site. Extensive data collection in MHRWS has provided baseline information of the mammal diversity in the area (*Balete et al. 2006, Relox et al. 2009*). Mt. Hamiguitan is of the four major mountains in the eastern Mindanao volcanic sector, the oldest independent volcanic sector in Mindanao, with geological deposits ranging from 47 to 3 Ma (*Sajona et al. 1997*).

To expand the protected area (PA) of the MHRWS, an area of ca. 2.99 km² expansion sites referring to specified areas outside the buffer zones (Figure 1c, green zone) was approved by municipal ordinances (Amoroso et al. 2018). It was issued with the aim of protecting and preserving the remaining biodiversity of the buffer zones referring to the identified areas outside the boundary of the core zone or PA (NIPAS Act of 1992, Section 8). Thus, this study provides data on mammal species composition, richness, diversity and status in the ca. 2.99 km² expansion sites. The data will be an input to the Protected Area Suitability Assessment (PASA) as required under NIPAS law (RA 7586) for legal promulgation. This study aimed to provide insights on the mammals and assessment of the added value of the ca. 299 ha expansion sites to the already protected core zone.

MATERIALS AND METHODS

Study Sites and Emersion

Fauna inventories were carried out at the MHRWS expansion sites from late October to December 2016 and on February to April 2018. The study sites were distributed in the municipalities of San Isidro, Governor Generoso and Mati City in the province of Davao Oriental, Mindanao, Philippines (Figure 1). The sites were classified under lowland mixed dipterocarp forest as trees belonging to family Dipterocarpaceae were dominant. The study sites were about 100 m - 5 km away from human habitation and 5 - 500 m away from bodies of water. The sites' dominant and emergent trees were Shorea polysperma (Blanco) Merr., Ochrosia spp. and Gymnostoma rumphianum (Miq.) L.A.S. Johnson reaching heights up to 32 m high. Ficus spp., other fruit plants, and fallen logs were common (80%) in study site 1 but rare (20%) in study sites 2-4. Exposed rocks were common in all the study sites.

Permit Statement

Prior informed consent from the communities was obtained by presenting the research to the stakeholders and members of the Protected Area Management Board (PAMB) of MHRWS for approval and issuance of the Gratuitous Permit (GP) from the Department of Environment and Natural Resources Region XI in the Philippines.

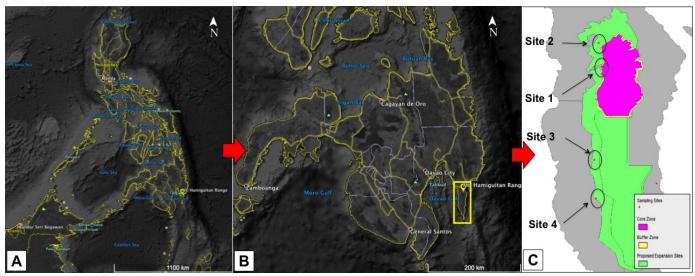


Figure 1. The study sites at Mt. Hamiguitan Range Wildlife Sanctuary expansion sites (yellow balloons). A) Philippine Map, B) Mindanao Map, C) Study Sites

- Site 1- Sitio Tumalite, Barangay La Union, San Isidro, Davao Oriental (622 m a.s.l.)
- Site 2- Sitio Tibanga, Barangay Maputi, San Isidro, Davao Oriental (292 m a.s.l.)
- Site 3- Sitio Tagibo, Barangay Oregon, Governor Generoso, Davao Oriental (169 m a.s.l.)
- Site 4- Sitio Tagaytay, Barangay Luzon, Governor Generoso, Davao Oriental (175 ma.s.l.)

Sampling, Processing, Identification and Analysis

Volant and non-volant mammals were caught during a total of 170 net nights and 223 trap-nights using the 12 m x 12 m mist nets and 30.8 x 17.78 x 17.78 cm live cage traps. Mist nets were strategically placed in flyways, forest edge, foraging areas and forest interior in a vertical forest stratum on ground (1-5 m) middle canopy (5-10 m) and upper canopy (10-15 m). The nets were left open from 1700 to 0600 hr to capture bats. The nets were monitored every 30-60 min to prevent mortality.

The live cage traps were set in various locations on the ground, including entrances of burrows, along runways, under root tangles, and under fallen logs using roasted coconut and peanut butter as bait. The traps were checked every early morning and late afternoon. To supplement faunal data, visual encounter and diurnal/nocturnal opportunistic sampling were conducted.

The study employed captured, marked and released method. Standard external measurements such as total length, tail length, hind foot length, ear length and body length, sex and other distinguishing characters were recorded from each animal (*Cole and Woinarski 2002, Menkhors and Knight 2001*). Captured animals were identified using the field guides on volant and non-volant mammals (*Ingle et al. n.d., Heaney et al. n.d.*) and literature. The animals were assessed using the IUCN Red List of Threatened Species (*IUCN 2017*) and literature (e.g., *Relox et al. 2009*).

The Shannon-Wiener's index and Bray-Curtis cluster analysis were performed using BioDiversity Pro 2.0 statistical software (*McAleece et al. 1999*). The criteria adopted for interpreting results are as follows: H'<1 = low diversity, H'1-3 = fair diversity and H'>3 = high diversity (*Prabhu et al. 2005*).

RESULTS AND DISCUSSION

Inventory of mammals in MHRWS expansion sites documented a total of 19 species belonging to 16 genera, nine families and five orders. These include 10 species of Chiroptera belonging to Megadermatidae (1 species), Pteripodidae (8 species) and Vespertilionidae (1 species); one species of Viverriidae (Carnivora), one species Cervidae and Suidae (Cetartiodactyla); one species of Cercopithecidae and Tarsiidae (Primates) and four Murida (Rodentia) (**Table 1**). This study reports nine species of mammals not reported in previous works (*Balete et al. 2006, Relox et al. 2009*) making Mt. Hamiguitan habitat to 30 species of bats and mammals. The study revealed

63% (19 species) of mammals observed in the entire range. Overall species richness is low compared to the 53 native species of mammals previously documented in Mt. Kitanglad (*Heaney et al. 2006*).

The current work documented ten species of bats while previous works in the protected area reported only five species (*Relox et al. 2009*). *Emballonura alecto, Harpyionycteris whiteheadi, Megaerops wetmorei, Megaderma spasma, Ptenochirus minor* and *Rousettus amplexicaudatus* had not been previously documented but were documented by the current work in the expansion sites, making the Mt. Hamiguitan range home to ten bat species (**Table 2**). Species richness for bats is low relative to Mt. Kitanglad Range Natural Park, where 32 species occur.

Also documented are nine species of mammals, which is 56% of the mammals (16 spp.), reported in the protected area of MHRWS (*Balete et al. 2006*). The species reported herein is lower compared to Mt. Kitanglad Range Nature Park, which harbors 21 species of non-volant mammals (*Heaney et al. 2006*).

Diversity Index

The low Shannon-Wiener's index (H'= 0.615) of mammals in the MHRWS expansion sites. Among the four study sites Shannon-Wiener's index is highest in Site 2 (H'=0.8) and lowest in Site 4 (H'=0.43). The higher number of species in Site 2 is attributed to the adequate habitat resources, intact vegetation and less habitat disturbance (**Table 2**).

The low Shannon-Wiener's diversity index in the MHRWS expansion sites could be attributed to the poor soil, leading to low forest productivity (*Kumar and Maiti 2013*) and habitat loss due to logging, mining and shifting cultivation observed in the sampling sites.

Similarity Index

Bray-Curtis cluster analysis suggests that similarity was high between sites. Sites 3 and 4 had the most related species (84.8%) forming the first clade. This similarity can be attributed to the vegetation types since the sites were adjacently situated. Sites 1 and 2 formed the second clade with 69.76 % similarity index. The latter sites were also situated adjacent to each other, but have different vegetation types, thus, the probability that home range overlapping is high (80-90%). All the sampling sites were situated in a lowland dipterocarp forest adjacent to an agro ecosystem (**Figure 2**).

Table 1. Bats and mammals in Mt. Hamiguitan Range Wildlife Sanctuary expansion sites.

Taxon	Species	Common Name	1	2	3	4	
				Study Sites			
			No.	of In	divid	viduals	
Chiroptera							
Megadermatidae	1. *Megaderma spasma Linnaeus, 1758					1	
Pteripodidae	2. Cynopterus brachyotis Muller, 1838	Common Short-nosed Fruit Bat	20	22	50	44	
	3. Haplonycteris fischeri Lawrence, 1939	Philippine Pygmy Fruit Bat	6	4			
	4. *Harpyionycteris whiteheadi Thomas, 1896	Harpy Fruit Bat		1			
	5. Macroglossus minimus E. Geoffroy, 1810	Dagger-toothed Fruit Bat	3	2	6	2	
	6. *Megaerops wetmorei Taylor, 1934	White-collard Fruit Bat		5			
	7. Ptenochirus jagori Peters, 1861	Greater Musky Fruit Bat	4	3	44	37	
	8. *Ptenochirus minor Yoshiyuki, 1979	Lesser Musky Fruit Bat	1		5		
	9. *Rousettus amplexicaudatus E. Geoffroy, 1810	Common Rousette			1		
Vespertilionidae	10. *Kerivola hardwickii	Hardwicke's woolly bat				1	
Carnivora							
Viverriidae	11. Paradoxurus hermaphroditus, Pallas, 1777	Asian Palm Civet		1			
Cetartiodactyla							
Cervidae	12. Cervus mariannus Desmarest, 1822	Brown Deer		1			
Suidae	13. Sus philippinensis Nehring, 1886	Philippine warty pig		1	1	1	
Primates							
Cercopithecidae	14. Macaca fascicularis Raffles, 1821	Long tailed macaque	1			1	
Tarsiidae	15. Tarsius syrichta Linnaeus, 1758	Philippine Tarsier			1		
Rodentia							
Muridae	16. Bullimus bagobus Mearns, 1905	Mindanao large forest rat		1			
	17. *Rattus argentiventer Robinson & Kloss, 1916	Ricefield rat			2		
	18. Rattus everetti Gunther, 1879	Common Philippine forest rat	1	7	1		
	19. *Rattus tanezumi Temminck, 1844	Oriental house rat				2	
	Total No. of Species		7	11	9	8	

^{*} Not reported by previous studies (Balete et al. 2006, Relox et al. 2009).

Table 2. Species richness and Shannon-Wiener's diversity index of mammals in the MHRWS expansion sites.

Sites	Coordinates	Elevation (masl)	Individuals Captured	Endemic Species	Threatened Species	Species Richness	Shannon- Wiener's Index (H')
Site 1	06° 44'15.24''N 126°08'59.36''E	622	36	4	-	7	0.7
Site 2	06°46'20.59''N 126°08'43.15''E	292	48	6	2	11	0.8
Site 3	06°36'01.87''N 126°08'21.59''E	169	111	4	-	9	0.53
Site 4	06°32'37.42''N 126°08'28.79''E	175	89	1	-	8	0.43
Average		-	-	-	-	8.75	0.615

Conservation Status Assessment

The study documented two vulnerable species *Megaerops wetmorei* and *Cervus mariannus* and eight endemic mammal species from the MHRWS expansion

sites (**Table 3, Figure 3**). Two invasive rat species *R. argentiventer* and *R. tanezumi* were noted in the sites. Human activities contributing to habitat conversion and degradation such as hunting, logging, shifting cultivation and mining is apparent in the MHRWS expansion sites.

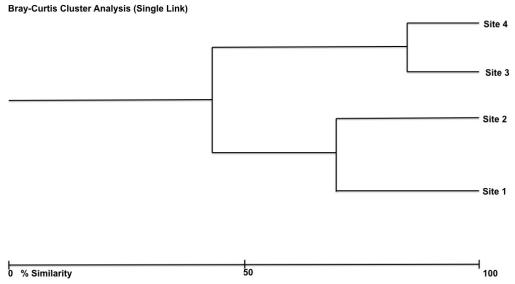


Figure 2. Dendrogram on the similarity of species composition of mammals in MHRWS expansion sites.

Table 3. Conservation and ecological status of mammals in Mt. Hamiguitan Range Wildlife Sanctuary expansion sites.

Species	Conservation Status	Ecological Status
1. Haplonycteris fischeri Lawrence		Philippine Endemic
2. Harpyionycteris whiteheadi Thomas		Philippine Endemic
3. Megaerops wetmorei	Vulnerable	
4. Ptenochirus jagori Peters		Philippine Endemic
5. Ptenochirus minor Yoshiyuki		Mindanao Endemic
6. Cervus mariannus	Vulnerable	Philippine Endemic
7. Bullimus bagobus Mearns		Mindanao Endemic
8. Rattus everetti Günther		Philippine Endemic
9. Tarsius syrichta Linnaeus		Philippine Endemic

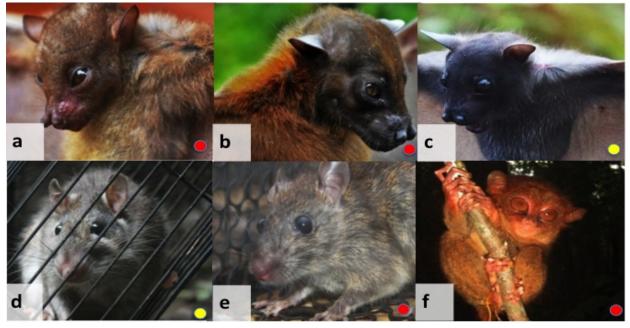


Figure 3. Some endemic mammals at the Mt. Hamiguitan Range Wildlife Sanctuary expansion sites:
a) Haplonycteris fischeri (Philippine Pygmy Fruit Bat); b) Ptenochirus jagori (Greater Musky Fruit Bat); c)
Ptenochirus minor (Lesser Musky Fruit Bat); d) Bullimus bagobus (Mindanao large forest rat): e) Rattus
everetti (Common Philippine forest rat); f) Tarsius syrichta (Philippine tarsier).
red dot-Philippine endemic, yellow dot- Mindanao endemic

CONCLUSION AND RECOMMENDATIONS

This diversity study of mammals in the Mt. Hamiguitan Range Wildlife Sanctuary expansion sites revealed 19 species belonging to 16 genera, nine families and five orders. This adds nine species to the previously reported mammals of Mt. Hamiguitan, bringing the total of documented mammal species to 30. The low diversity index of mammals (H'=0.615) in the MHRWS expansion sites is attributed to its poor soil resulting to low forest productivity and habitat loss inflicted by logging, mining and shifting cultivation. Species turnover between sites was low. Two species were vulnerable and eight endemics. The unique assemblage of bats and mammals in the MHRWS expansion sites appeals for more sampling effort and conservation strategies by the stakeholders to update the diversity status and maintain the mammal assemblage.

REFERENCES

- Amoroso, V.B. and Aspiras, R.A. 2011. "Hamiguitan Range: A Sanctuary for Native Flora" *Saudi Journal of Biological Sciences* 18:7-8.
- Amoroso, V.B., Obsioma, L.D., Arlalejo, J.B., Apspiras, R.A., Capili, D.P., Polizon, J.J.A. and Sumile, E.B. 2009. "Inventory and Conservation of Endangered, Endemic and Economically Important flora of Hamiguitan range, Southern Philippines". In: Proceedings of the 7th Flora Malesiana Symposium. Blumea 54. *Journal of Plant Taxonomy and Plant Geography, National Herbarium Nederland, The Netherlands*. pp. 71–76.
- Balete, D.S., Quidlat, R.S. and Ibañez, J.C. 2006. "Non-volant Mammals of Mt. Hamiguitan, Eastern Mindanao, Philippines" *BANWA Natural Science* 3(1 & 2):65-80.
- Balete, D.S., Heaney, L.R., Rickart, E.A., Quidlat, R.S. and Ibañez, J.C. 2008. "A New Species of Batomys (Mammalia: Muridae) from Eastern Mindanao Island, Philippines". Proceedings of the Biological Society of Washington 121(4):411-428.
- Balete, D.S., Heaney, L.R., Veluz, M.J. and Rickart, E.A. 2009. "DiversityPatternsofSmallMammalsintheZambalesMts., Luzon, Philippines." *Mammalian Biology* 74:456-466.
- Cole, J. and Woinarski, J. 2002. "Field guide to the rodents and dasyurids of the Northern Territory". 1st ed. Surrey Beatty and Sons, Sydney, Australia.
- Heaney, L.R. 1986. "Biogeography of Mammals in SE Asia: Estimates of Rates of Colonization, Extinction, and Speciation" *Biological Journal of the Linnean Society* 28:127-165.

- Heaney, L.R. 1993. "Biodiversity Patterns and the Conservation of Mammals in the Philippines" *Asia Life Sciences* 2(2): 261-274.
- Heaney, L.R. 2002. "A Decade of Research on the Philippine Mammals; Progress and Challenges" *Siliman Journal* 42(1): 88-108.
- Heaney, L.R. and Regalado, J.C. 1998. Vanishing Treasures of the Philippine Rain Forest. The Field Museum, Chicago. 88 pp.
- Heaney, L.R. and Tabaranza, B.R. Jr. 2006a. "The Mammals and Birds of Camiguin Island, Philippine, a Distinctive Center of Biodiversity" *Fieldiana Zoology* 106: 1-13.
- Heaney, L.R. and Tabaranza, B.R. Jr. 2006b. "A New Species of Forest Mouse, Genus Apomys (Mammalia: Rodentia: Muridae), from Camiguin Island, Philippines" *Fieldiana Zoology* 106: 14-27.
- Heaney, L.R., Balete, D.S., Rickart E.A., Veluz, M.J. and Sharon, A.J. 2009. "A New Genus and Species of Small 'Tree-Mouse' (Rodentia, Muridae) Related to the Philippine Giant Cloud Rats". In: Systematic Mammalogy, Contributions in honor of Guy G. Musser. (eds. R.S. Voss and M.D. Carleton). Bulletin of the American Museum of Natural History 331: 205-229.
- Heaney, L.R., Ingle, N.R., Sedlock, J.L. and Tabaranza, B.R. Jr. n.d. Non-Flying Mammals of Mindanao Island, Philippines. The Field Museum. Chicago IL, USA. Rapid color guide #50 version 1.1.
- Heaney, L.R., Tabaranza B.R. Jr., Rickart, E.A., Balete, D.S. and Ingle, N.R. 2006. "The Mammals of Mt. Kitanglad Nature Park, Mindanao, Philippines" *Fieldiana Zoology* 112: 1-63.
- Heaney, L.R., Tabaranza, B.R. Jr., Balete, D.S. and Rigerta, N. 2006. "Synopsis and Biogeography of the Mammals of Camiguin Island, Philippines" *Fieldiana Zoology* 106: 28-48.
- Heaney, LR, Balete, D.S., Dolar, M.I., Alcala, A.C., Dans, A.T.L., Gonzales, P.C., Ingle, N.R., Lepiten, M.V., Oliver, W.L.R., Ong, P.S., Rickart, E.A., Tabaranza, B.R. Jr. and Utzurrum, R.C.B. 1998. Fieldiana: Zoology: New Series. No. 88. Field Museum of Natural History. 61 pp.
- Ingle, N.R., Sedlock, J.L. and Heaney, L.R. (n.d.). Bats of Mindanao Island, Philippines. The Field Museum. Rapid color guide #49 version 1.2.
- [IUCN] International Union for Conservation of Nature and Natural Resources. 2017. The IUCN Red List of Threatened Species. Version 2018-1.ISSN 2307-8235.

- Kumar, A. and Maiti, S.K. 2013. "Availability of Chromium, Nickel and Other Associated Heavy Metals of Ultramafic and Serpentine Soil /Rock and in Plants" International *Journal of Emerging Technology and Advanced Engineering* 3(2): 256-268.
- McAleece, N., Lambshead, P.J.D., Paterson, G.L.J. and Gage, J.D. 1999. Biodiversity Pro. A program research for analyzing ecological data.
- Menkhorst, P. Knight, F. 2001. A field guide to the mammals of Australia . Oxford University Press, South Melbourne, Australia.
- Mittermeier, R.A., Gil, R.P. and Mittermeier, C.G. (eds.). 1997. Megadiversity: Earth's Biologically Wealthiest Nations. CEMEX, Monterrey, Mexico. 501 pp.
- Oliver, W.L.R. 1994. "Threatened Endemic Mammals of the Philippines: An Integrated Approach to the Management of Wild and Captive Populations". In: Creative conservation. (eds. P.J.S. Olney, G.M. Mace & A.T.C. Feistner). Springer, Dordrecht.
- Ong, P., Afuang, L.E. and Rosell-Ambal, R.G. (eds.). 2002. Philippine Biodiversity Conservation Priorities: A Second Iteration of the National Biodiversity Strategy and Action Plan. Philippine Department of the Environmental and Natural Resources, Quezon City, 18 + 113 pp.
- Prabhu, G., Srinivasan, R., Kantwa, S.R., Palsaniya, D.R. and Chaudhary, M. 2015. "Weed Seed Bank Studies in the Field of Fodder Cowpea [Vigna unguiculata (L.)]. *International Journal of Applied and Pure Science and Agriculture* (IJAPSA)1(5):83 87.
- Relox, R.E., Ates-Camino, F.B., Bastian Jr., S.T. and Leano, E.P. 2009. "Elevation Gradation of Mammals in Tropical Forest of Mt. Hamiguitan Range, Davao Oriental" *Journal of Nature Studies* 8(1):27-34.
- Rickart, E.A., Heaney, L.R., Goodman, S.M. and Jansa, S. 2005. "Review of the Philippine Genera Chrotomys and Celaenomys (MURINAE) and Description of a New Species" *Journal of Mammalogy* 86(2):415-428.
- Sajona, F.G., Bellon, H., Maury, R.C., Pubellier, M., Quebral, R.D., Cotton, J., Bayon, F.E., Pagado, E., and Pamatian, P. 1997. "Tertiary and Quaternary Magmatism in Mindanao and Leyte (Philippines): Geochronology, Geochemistry, and Tectonic setting" *Journal of Asian Earth Sciences* 15:283-288.
- Salibay, C.C. and Luyon, H.A.V. 2008. "Distribution of Native and Non-Native Rats (Rattus spp.) Along an Elevational Gradient in a Tropical Rainforest of Southern Luzon, Philippines" *ECOTROPICA* 14:129-136.

- Tanalgo, K.C. and Hughes, A. 2018. "Bats of the Philippine Islands-A review of Research Directions and Relevance to National-Level Priorities and Targets" *Mammalian Biology* 91:46-56. DOI: 10.1016/j.mambio.2018.03.005.
- [WCSP] Wildlife Conservation Society of the Philippines. 1997. Philippine Red Data Book. Bookmark. Makati City. 262 pp.

ACKNOWLEDGMENT

The Research team is grateful to the Biodiversity Management Bureau (BMB) of the Department of Environment and Natural Resources (DENR) for the Gratuitous Permit and Central Mindanao University (CMU) administration, Center for Biodiversity Research and Extension in Mindanao (CEBREM) and Local Government Units of San Isidro, Governor Generoso and Mati for the logistics support. Most of all, sincere and utmost gratitude is conveyed to the funding agencies, the Commission on Higher Education, Department of Environment and Natural Resources Region XI Davao Oriental through the active leadership of the PENRO and Park Superintendent of Mt. Hamiguitan Range Wildlife Sanctuary (MHRWS).