

Journal of Environmental Science and Management 23-2: 60-71 (December 2020) ISSN 0119-1144

The Use of GIS to Visualize Spatial Distribution of Zooplankton in Teluk Bahang Reservoir, Penang, Malaysia

ABSTRACT

The Teluk Bahang Reservoir is the largest in Penang, Malaysia and supplies drinking water to the inhabitants of the Northwest of Penang Island. A monthly testing of water quality and study of zooplankton species abundance was conducted at four different sampling locations and three different water depths. The water quality parameters measured include water temperature, dissolved oxygen, conductivity, pH, orthophosphate (PO₄-P), ammonium-nitrogen (NH₄-N), nitrite-nitrogen (NO₂-N) and nitrate-nitrogen (NO₃-N). In this study, multiple techniques in ArcMap software, namely, Inverse Distance Weighted (IDW) and Kernel Density, were used to identify the relationship among water quality parameters and species abundance of zooplankton in the sampling stations. In GIS spatial analysis, high abundance areas or hotspot areas of zooplankton were presented in a visual map. The distribution pattern of zooplankton species and the geographic distribution of water quality parameters were clearly identified based on inspection of the map. The data generated from GIS mapping in this study is important for ecological research, particularly on zooplankton distribution in a drinking water reservoir.

Keywords: Penang, water quality, zooplankton, ArcMap, Inverse Distance Weighted, GIS

Azma Hanim Ismail^{1*} Azimah Abd Rahman² Lim Chiew Chin¹

- ¹ School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
- ² School of Humanities, Universiti Sains Malaysia, Penang 11800, Malaysia
- *corresponding author: azma_hanim@yahoo.com

INTRODUCTION

Zooplankton play a crucial role in food webs of aquatic ecosystems. Most zooplankton are filter feeders, serving as primary grazers of algae, bacteria, protozoans, as well as primary food sources for fish larvae and invertebrate predators. Zooplankton are highly sensitive to environmental variation and often exhibit rapid changes to abundance and diversity, in response to the environmental disturbance (Golmarvi et al. 2018). Long-term monitoring of zooplankton community structures provides useful information about environmental changes. The detection of anthropogenic impact could be troublesome if information in the background studies and changes in ecological systems are scarce. For example, with long-term monitoring of zooplankton community structures, variations in patterns and species composition related to climatic and water quality changes can be detected (Wiafe et al. 2008; Scheef et al. 2012). Magurran et al. (2010) also reported the importance of long-term datasets in biodiversity studies, in order to reduce the rate of biodiversity loss. Several long-term studies have dealt with marine plankton such as Volvenko (2019) who mapped the distribution of plankton in East seas and the Pacific Ocean from 1984-2013 while Balazy et al. (2018) investigated the size

structure of plankton in Arctic region from 2010-2016.

Geographic Information System (GIS) tend to be a practical and efficient tool in ecological research, particularly for model prediction on species diversity patterns. Numerous studies documented the use of GIS in mapping species distribution of fauna and flora in the marine ecosystem. For instance, Bryan and Metaxas (2007) predict suitable habitat for gorgonian corals while *Embling et al.* (2010) envisage habitat for harbour porpoise in the west coast of Scotland. Other than that, Peterson et al. (2000) modelled endemic mammals in Veracruz, Mexico. Data presentation based on GIS, specifically on the zooplankton distribution, is a current novel scenario. The clear view of the metadata with a geospatial component based on a series of maps, provides information on zooplankton species distributed in any spot of the waterbody that has rarely been explored. This data can be displayed geographically, to become suited for data collection and analysis for zooplankton monitoring during the study period. GIS was used in order to determine the occurrence and abundance of zooplankton per month, based on maps, along with the temporal and spatial variations of water quality parameters.

Studies on GIS application on freshwater zooplankton are scarce and have not much been utilized by zooplankton ecologists. Most of the zooplankton studies related to GIS applications were conducted on coastal and marine waters (*Kane and Prezioso 2008; Panti et al. 2015; Putra et al. 2016, Canencia and Ascano 2017*). In Malaysia, analyzing freshwater zooplankton data using GIS has not yet been explored. Thus, this study aimed to produce maps that illustrate the zooplankton abundance and the prevailing environmental conditions using GIS (ArcGIS 10.3).

MATERIALS AND METHODS

Study site

Teluk Bahang Reservoir, constructed in 1999, is located in the Northwest of Penang Island of Malaysia (5°26'22"N and 100°12'49"E). It is the largest reservoir in Penang Island that supplies drinking water to the people in Penang. The maximum water capacity is 19.24 x 109 L, with an average daily run-off of 61.6 x 109 L d-1. The reservoir is fed by small rivers and rainfall in the water catchment areas. It is an earth-filled reservoir, built across the flood plain of Teluk Bahang Basin, and was designed to complement the natural landscape. The surrounding reservoir is a natural tropical forest, which is one of the recreational areas and venues for the dragon boat competition in Penang. An equatorial climate predominates in Penang, characterized by hot and humid weather all year round. Annual precipitation rates are about 2,707 mm with the temperatures range between 29-35 °C during the day. It has two distinct seasons, namely wet seasons (March-April and July-October) and dry seasons (May-June and November-February) (Nurul-Ruhayu and Yahya 2013).

Field sampling and laboratory analyses

Zooplankton samples were collected using 30 µm mesh plankton net, while water samples were collected using a Van Dorn water sampler at four independent locations (**Figure 1** and **Table 1**), at three depths (5 m, 10 m, and 15 m), from March 2014 to March 2015. The selection of sampling stations was based on different depth and characteristic. Station 1 is the deepest station and situated at the limnetic zone while Station 2 is shallower than Station 1 and located in the limnetic zone in the middle of the reservoir. Station 3 is shallower than Stations 1 and 2 and situated at the meeting point of two small rivers while Station 4 is the shallowest among the sampling stations and located at one of the small rivers.

Three sampling depths (5 m, 10 m and 15 m) which were in the aphotic zone were chosen in the present study due to the characteristics of light-avoidance by zooplankton (*Martynova and Gordeeva 2010*). Preliminary survey also exhibited a higher abundance of zooplankton in these depths. Taxonomic identification followed *Idris* (1983), *Korovchinsky* (1992), and *Shiel* (1995). The quantitative determination of water temperature, dissolved oxygen (DO), conductivity, and pH, were carried out in-situ using YSI multi-probes (Model 556 MPS). Analyses of orthophosphate (PO₄-P), ammonium-nitrogen (NH₄-N), nitrite-nitrogen (NO₂-N), nitrate-nitrogen (NO₃-N) and chlorophyll a concentration were conducted in the laboratory, following the method of *Adams* (1991).

Visualization and mapping

GIS software ArcGIS 10.3 was used to map zooplankton distribution by analysing spatial data collected during field sampling. The spatial analysis tool was used to identify hotspot areas using the Kernel Density technique. Next, the distribution pattern of zooplankton population was created. An Inverse Distance Weighted (IDW) technique using the interpolation function was used to project the correlation between water quality parameters and zooplankton population abundance.

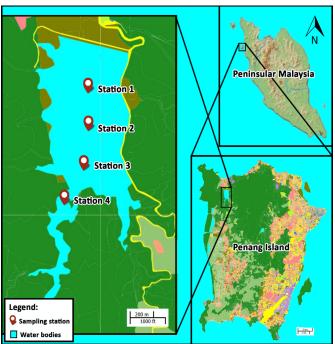


Figure 1. Sites and sampling locations for the study of water quality and zooplankton species abundance in Teluk Bahang Reservoir, Pulau Pinang, Malaysia (Modified from Pulau Pinang Town and Country Planning Department 2018).

pecies

abundance in Teluk Bahang Reservoir, 2014-2015.	Table 1.	The	locations	and	depths	of the	sampling	stations	in	the	study	ot	water	quality	and	zooplank	ton sp
		abur	ndance in	Telu	k Bahar	ng Res	servoir, 201	14-2015.									

Station	Latitude	Longitude	Depth (m)		
			Maximum	Minimum	
1	05°26'37.14"N	100°12′42.92″E	38.2	31.2	
2	05°26'20.88"N	100°12'48.36''E	37.4	30.4	
3	05°26'05.94"N	100°12'50.46''E	31.6	24.6	
4	05°25'57.54"N	100°12'44.10''E	10.1	3.1	

RESULTS AND DISCUSSIONS

Physicochemical parameters

Geographic Information System (GIS) application is a vital tool in the analyses of aquatic ecosystem studies. This tool provides many functions that enhance practical methods to be more systematic in terms of analysis, as compared to previous conventional methods, such as statistical techniques and numerical modelling. Geographic Information System is a relatively new technology that is suitable in the application of conservation purposes, as the data availability can be shared and updated at any time through the use of database collection. In fact, it is frequently used for monitoring and predicting the trends and hotspots of biotic and abiotic components, in order to aid in effective management and conservation of aquatic systems (Putra et al. 2016). GIS provides accurate and comprehensible information in graphic form; thus decision-makers are able to respond urgently in matters related to tropical water management. Ecological information can be linked with the management decisions of tropical waters using GIS (Mironga 2004).

Due to the limitations in sampling time and samples processing, only four stations were established for sampling stations. The temperature decreased with depth. The highest mean water temperature was recorded at 5 m depth (29.2 \pm 0.3 °C); whereas the lowest mean water temperature was recorded at 15 m depth (27.7 \pm 0.1 °C) (**Figure 2**). When comparing among stations, the temperature almost had similar measurements at all sampling stations. Warm and consistent water temperature measurements were obtained throughout the study. According to Xing et al. (2014), tropical lakes are characterized by weaker seasonal variation in solar radiation than temperate lakes, thus, the warmer water temperatures due to larger solar radiation.

Mean DO demonstrated a similar pattern at Stations 1, 2 and 3 (Figure 3). It decreased with depth, subsequently showing hypoxia at the bottom. Station 4 recorded the highest mean DO at 5 m depth (6.27 \pm 0.28 mg L⁻¹); whereas Station 2 recorded the lowest mean DO at 15 m depth $(0.48 \pm 0.25 \text{ mg L}^{-1})$ (Figure 3). Overall, DO levels decreased from upper to deeper water columns. As pointed out by Payne (1986), DO is highest when it is close to the surface water due to the uptake from the atmosphere, and the production of oxygen by phytoplankton during photosynthesis (Andersen et al. 2017). Hypoxic condition, which refers to very low oxygen content in water, was observed at 10 m and 15 m depths in the study site. This phenomenon is similar to the Chenderoh Reservoir in Perak, Malaysia (Meor Hussain et al. 2002). In addition, below the euphotic zone, the decomposition of dead algae and organic matters contributed to the DO reduction rapidly, resulting in the formation of anoxia area (Huang et al. 2019). During the decomposition of organic matters, DO is consumed, which leads to low DO in water (Chapman 1996). This is, thus, in agreement with the present study showing evidence for low DO in deeper water layers, probably due to the plants that have been inundated (when the reservoir is built) and have undergone decomposition process.

Mean conductivity increased with depth. Station 1 recorded the highest mean conductivity at 15 m depth $(30.68 \pm 1.39 \,\mu\text{S cm}^{-1})$; whereas Station 4 recorded the lowest mean conductivity at 5 m depth (24.60 \pm 0.40 μS cm⁻¹) (Figure 4). Chapman (1996) points out that the normal conductivity of most freshwater ecosystems ranges from 10 to 1,000 µS cm⁻¹. In this study, mean conductivity recorded was 27.89 \pm 0.27 μS cm⁻¹, thus, within the range proposed by Chapman (1996). Abida and Harikrishnarai (2008) pointed out that decomposition and mineralization of organic materials will increase the level of conductivity in the water column. Bhateria and Jain (2016) came up with a similar idea that the existence of inorganic constituents in run-off together with the

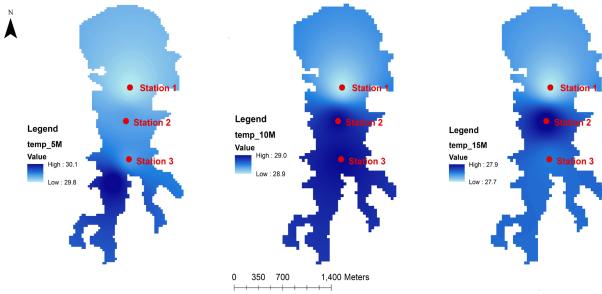


Figure 2. Variations of water temperature (°C) at different stations in the study of water quality and zooplankton species abundance in Teluk Bahang Reservoir, Malaysia, 2014-2015.

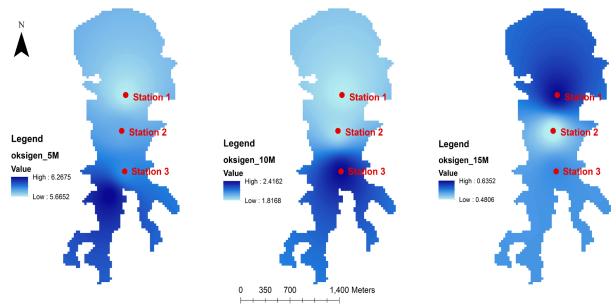


Figure 3. Variations of dissolved oxygen (mg L⁻¹) at different stations in the study of water quality and zooplankton species abundance in Teluk Bahang Reservoir, Malaysia, 2014-2015.

presence of chloride, phosphate, and nitrate from sewage systems would increase the conductivity level. Hence, conductivity is a very useful water quality parameter to determine the effect of run-off and effluent discharges in the aquatic system (*Chapman 1996*).

Mean pH also decreased with depth. Station 4 recorded the highest mean pH at 5 m depth (6.9 ± 0.12) ; whereas Station 2 recorded the lowest mean pH at 15 m depth (6.03 ± 0.08) (**Figure 5**). This finding is in line with the work by *Ling et al.* (2017) on the Bakun Reservoir in Sarawak, Malaysia. Lower pH measurements recorded in the deeper water column might be due to the

decomposition process, which produces carbon dioxide (*Krachler et al. 2009; Nydahl et al. 2019*). According to *Chapman (1996)*, 6.0-8.5 is the pH range of most natural waters. pH is a crucial variable in water quality monitoring of ecosystem health as aquatic organisms have certain ranges of pH tolerance. pH water depends on the nature of the water, which is transported from the catchment area and drainage networks (*Mihu-Pintilie et al. 2014*).

Station 1 recorded the highest mean PO_4 -P concentration at 10 m depth (0.038 \pm 0.008 mg L^{-1}), whereas Station 3 recorded the lowest mean PO_4 -P

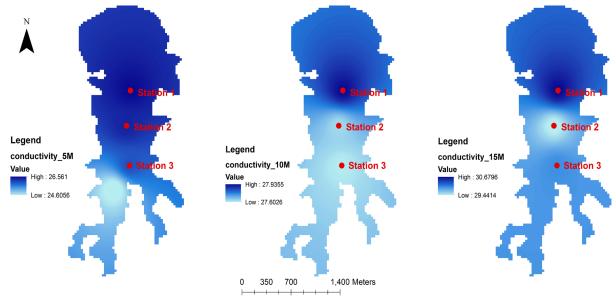


Figure 4. Variations of conductivity (μS cm⁻¹) at different stations in the study of water quality and zooplankton species abundance in Teluk Bahang Reservoir, Malaysia, 2014-2015.

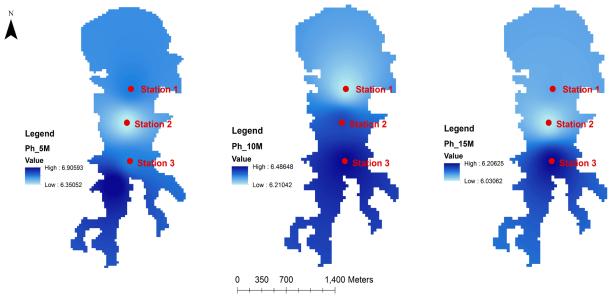


Figure 5. Variations of pH at different stations in the study of water quality and zooplankton species abundance in Teluk Bahang Reservoir, 2014-2015.

concentration at 5 m depth $(0.023 \pm 0.003 \text{ mg L}^{-1})$ (**Figure 6**). Oram (2005) verified that the PO₄-P concentrations range from 0.01-0.03 mg L⁻¹ is the level in uncontaminated lakes. Therefore, low PO₄-P level indicates that the Teluk Bahang Reservoir is unpolluted. Quinton et al. (2001) point out that greater rainfall intensities increased the run-off and erosion leading to an increase in phosphorus transport, while Blick et al. (2004) verified that phosphorus often combines with fine soil particlesand flow along with water as suspended sediments.

Mean NH₄-N concentration increased with depth.

Station 2 recorded the highest mean NH_4 -N concentration at 15 m depth (0.158 ± 0.029 mg L⁻¹); whereas Station 4 recorded the lowest mean NH_4 -N concentration at 5 m depth (0.052 ± 0.012 mg L⁻¹) (**Figure 7**). This is probably derived from the decomposition of submerged trees and terrestrial plants at the bottom of the reservoir contributing to higher nutrients level and organic matter in the deeper depth (*Straskraba et al. 1993*). *Yusoff et al.* (2011) stated that NH_4 -N is produced from nitrogenous waste excreted by fish and crustaceans in the water column.

Mean NO₃-N showed fluctuations at Stations 1, 2 and 3 (**Figure 8**). Station 2 recorded the highest mean NO₃-N

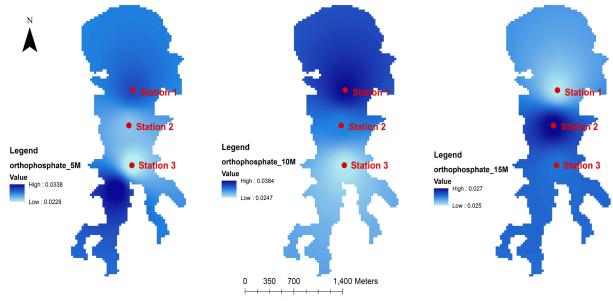


Figure 6. Variations of orthophosphate (mg L⁻¹) at different stations in the study of water quality and zooplankton species abundance in Teluk Bahang Reservoir, 2014-2015.

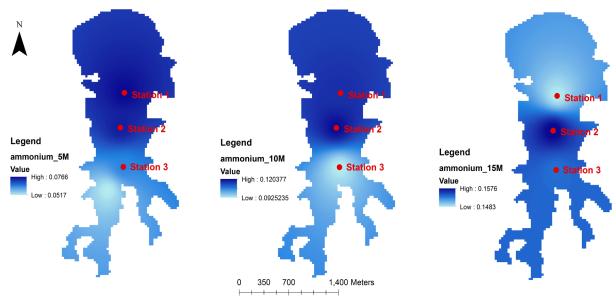


Figure 7. Variations of ammonium-nitrogen (mg L⁻¹) at different stations in the study of water quality and zooplankton species abundance in Teluk Bahang Reservoir, 2014-2015.

at 10 m depth $(0.051 \pm 0.011 \text{ mg L}^{-1})$; whereas Station 4 recorded the lowest mean NO₃-N $(0.028 \pm 0.008 \text{ mg L}^{-1})$ at 5 m depth (**Figure 8**). As described in detail by *Quiros* (2003), NO₃-N, NH₄-N accumulate in lentic water bodies, such as lakes and reservoirs. When NO₃-N enters the lake from external sources, such as drainage basin, it is transformed in organic matter by autotrophs and bacteria, which then goes to the NH4-N pool through food web transmission (*Quiros* 2003). *Zorcic et al.* (2015) provide evidence, suggesting that the changes of NO₃-concentration in the reservoir depend on the changes in the amount and quality of water from its tributaries.

Fluctuations of mean NO_2 -N concentration were observed at various depths of all sampling stations (**Figure 9**). Station 3 recorded the highest mean NO_2 -N concentration at 15 m depth $(0.004 \pm 0.001 \text{ mg L}^{-1})$; whereas Station 4 recorded the lowest mean NO_2 -N concentration at 5 m depth $(0.003 \pm 0.001 \text{ mg L}^{-1})$. Variations of NO_2 -N and NO_3 -N concentrations were obtained in the sampling stations. According to *Wetzel* (2001), algal assimilation and denitrification would result in a rapid decline in nitrate. Higher levels of NO_2 -N and NO_3 -N were observed during the sampling months with higher rainfall, as they can easily dissolve in rainwater and then move into the reservoir.

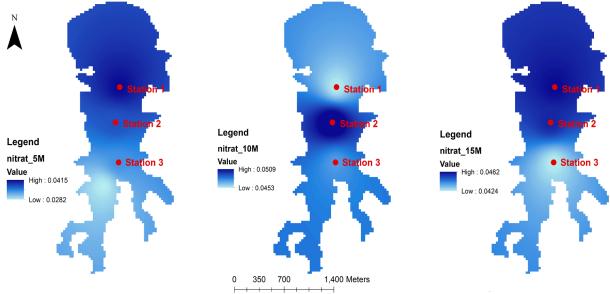


Figure 8. Variations of nitrate-nitrogen (mg L⁻¹) at different stations in the study of water quality and zooplankton species abundance in Teluk Bahang Reservoir, 2014-2015.

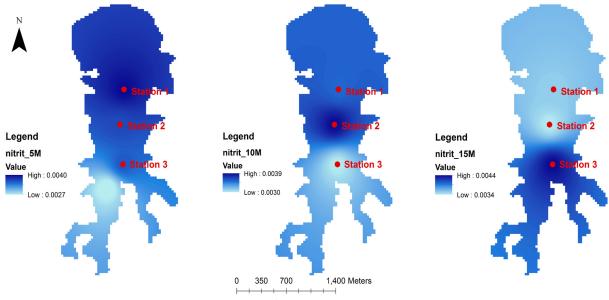


Figure 9. Variations of nitrite-nitrogen (mg L⁻¹) at different stations in the study of water quality and zooplankton species abundance in Teluk Bahang Reservoir, 2014-2015.

Based on the vertical profiles, mean chlorophyll a concentration showed a similar pattern at Stations 1, 2 and 3 (**Figure 10**). Our observations showed that chlorophyll a level decreased with depths at all stations. Station 1 recorded the highest mean chlorophyll a concentration $(8.01 \pm 0.58~\mu g~L^{-1})$ at 5 m depth whereas Station 3 recorded the lowest mean chlorophyll a concentration $(1.99 \pm 0.51~\mu g~L^{-1})$ at 15 m depth (**Figure 10**). This finding is in accord with work by *Narvekar and Kumar* (2014), who reported that chlorophyll biomass decreases rapidly with depth. According to *Wen et al.* (2016), light was the limiting factor for photosynthesis in the deeper water column and consequently, the algal growth rate

was seriously limited. The measure of chlorophyll a concentration provides an estimation on the density of photosynthetic plankton, making it a potential indicator of trophic status in aquatic systems. Hence, it is an important parameter for water quality monitoring and assessment.

Zooplankton

Zooplankton were the most abundant at 5 m, followed by 10 m and 15 m, across all sampling stations during the study (**Figure 11**). The highest mean abundance of zooplankton was observed at 5 m depth of Station 4 (349)

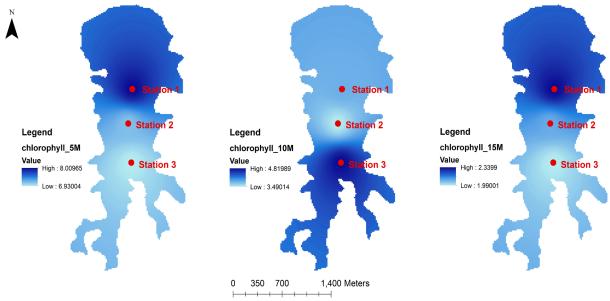


Figure 10. Variations of chlorophyll a (μg L⁻¹) at different stations in the study of water quality and zooplankton species abundance in Teluk Bahang Reservoir, 2014-2015.

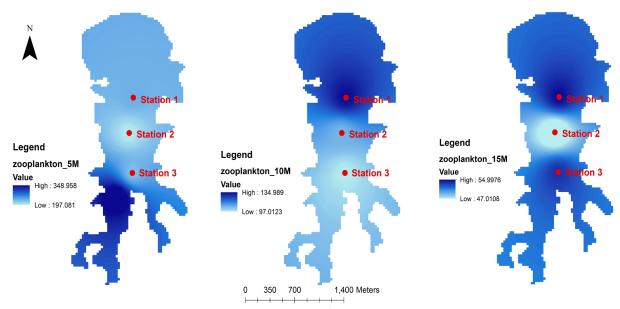


Figure 11. Variations of zooplankton abundance (ind L-1) at different stations in the study of water quality and zooplankton species abundance in Teluk Bahang Reservoir, 2014-2015.

 \pm 115 ind L⁻¹); while the lowest mean abundance was recorded at Station 2 (197 \pm 61 ind L⁻¹). At 10 m depth, the highest and lowest mean abundance was recorded at Station 1 (135 \pm 46 ind L⁻¹) and Station 3 (97 \pm 17 ind L⁻¹). Station 1 demonstrated the highest mean abundance of zooplankton at 15 m depth (55 \pm 9 ind L⁻¹); whereas the lowest mean abundance was recorded at Station 2 (47 \pm 5 ind L⁻¹).

Among the 28 taxa, Rotifera dominated with 22 taxa, followed by Cladocera (4 taxa) and Copepoda (2 taxa) (**Table 2**). Rotifera was the dominant group, which recorded the highest relative abundance (78.71%),

followed by Cladocera and Copepoda, which accounted 12.15% and 9.14% respectively (**Table 2**). Among the Rotifera, *Ptygura* sp. was the main constituent with a relative abundance of 55.083%. Several species (*Asplanchna* sp., *Brachionus calyciflorus*, *B. forficula*, *Lecane lunaris* and *L. papuana*) recorded very low percentages, which were less than 0.01%, in the study sites. *Bosminopsis deitersi* with the relative abundance of 8.99% was predominant in Cladocera. For Copepoda (9.14%), Cyclopoida contributed 9.05% of relative abundance; while Harpacticoida only accounted for 0.09%. In the present study, the abundance of cladocerans was low. According to *Helenius et al.* (2015), the

Table 2. Relative abundance of zooplankton taxa in Teluk Bahang Reservoir, 2014-2015.

Taxa	Relative abundance (%)
Rotifera	78.705
Anuraeopsis fissa	3.960
Anuraeopsis navicula	0.528
Anuraeopsis sp.	0.217
Ascomorpha sp.	0.146
Asplanchna sp.	0.005
Bdelloidea	0.160
Brachionus calyciflorus	0.005
Brachionus forficula	0.005
Collotheca sp.	3.813
Conochilus sp.	0.746
Keratella cochlearis	0.335
Keratella tecta	7.005
Keratella sp.	0.085
Lecane hamata	0.231
Lecane lunaris	0.009
Lecane papuana	0.014
Notommata sp.	2.371
Polyarthra sp.	0.584
Ptygura sp.	55.083
Trichocerca pusilla	0.297
Trichocerca similis	1.056
Trichocerca sp.	2.052
Cladocera	12.151
Bosminopsis deitersi	8.988
Diaphanosoma excisum	0.231
Diaphanosoma sarsi	0.723
Diaphanosoma sp.	2.210
Copepoda	9.143
Cyclopoida	9.053
Harpacticoida	0.090

predation eliminated cladocerans efficiently compared to copepods, and this led to pattern changes in rotifer abundance. Haberman et al. (2007) stated that cladocerans were reported to be more abundant in eutrophic lakes. Hence, this indicates that the Teluk Bahang Reservoir is relatively clean. Ismail et al. (2019), however, points out that good water management in the reservoir such as controlling water retention time and flushing rate also contribute to the dominance and abundance of certain zooplankton species.

Zooplankton distributions are strongly affected by oxygen variability (*Wishner et al. 2018*). In the present study, mean abundance of zooplankton decreased with an increase in depth since DO decreased with increasing depth. Furthermore, their main food source, which is phytoplankton, is abundant in upper water layers as observed by *Khalifa et al.* (2015). This supports the fact

that zooplankton in the present study were most abundant at 5 m, followed by 10 m and 15 m, across all sampling stations.

Kehayias et al. (2013) also stated that zooplankton abundance was characterized by a sharp decline with depth. Although zooplankton were distributed throughout the water column, they were usually more concentrated in the upper water, mainly at the top 5 m (Burns and Mitchell 1980). At 15 m depth, which was anoxic, the very low abundance of zooplankton was detected. A similar idea was initiated by Doubek et al. (2018) that most individual zooplankton genera avoided anoxic hypolimnia and remained in the epilimnion during the daytime in reservoirs. Thus, the current study clearly explains the patterns of zooplankton distribution at three different depths associated with dissolved oxygen.

All the water quality and zooplankton distribution data in the present study were produced in the form of map illustrations using the GIS technique. *Delgado and Marin* (1997) suggested that GIS, which was used to examine zooplankton components in aquatic ecosystems, may help resource managers to better utilize the available data and make a correct decision for sustainable water resources management.

CONCLUSION AND RECOMMENDATIONS

Geographic Information System (GIS) mapping is a useful tool in analyzing and illustrating the trends and pattern changes of the spatial-temporal abundance of zooplankton. In Malaysia, analyzing freshwater zooplankton data using GIS has never been explored. Our study could be a pilot study of GIS mapping on freshwater zooplankton in Malaysian reservoirs.

Based on the study, zooplankton abundance is primarily controlled by fluctuations in physical environments and nutrient concentrations of water quality, which then cause variation and high seasonality among sampling stations. In fact, the physicochemical and biological analyses were further emphasized in this study as a holistic indicator that is capable of assessing reservoir's water quality. The information can provide a basis for evaluating the drinking water quality, and the presentation can also be a tool for the catchmentrelated analysis of the natural conditions, the landscape water and material balance in a drinking water reservoir. Moreover, the findings may contribute as a bases for the evaluation of the temporal and spatial development of the drinking water quality. Thus, GIS mapping, seem to be useful information and may serve as a future reference in ecological research. These will provide valuable information to support effective water quality management to policymakers and the resource managers involved in watershed management and water supply services. Further research is recommended to implement GIS accompanied with field data in determining water parameters and population abundance as it is a practical technique for the assessment of any aquatic ecosystems.

REFERENCES

- Abida, B., Harikrishnarai. 2008. "Study on the quality of water in some streams of Cauvery River" *E-Journal of Chemistry* 5(2): 377-384.
- Adams, V.D. 1991. Water and Wastewater Examination Manual. Lewis Publishers. 264 pp.
- Andersen, M.R., Kragh, T. and Sand-Jensen, K. 2017. "Extreme Diel Dissolved Oxygen and Carbon Cycles in Shallow Vegetated Lakes" *Proceedings of the Royal Society B: Biological Sciences* 284: 20171427.
- Balazy, K., Trudnowska, E., Wichorowski, M. and Blachowiak-Samolyk, K. 2018. "Large versus small zooplankton in relation to temperature in the Arctic shelf region". *Polar Research* 37(1): 1427409.
- Bhateria, R. and Jain, D. 2016. "Water quality assessment of lake water: a review" *Sustainable Water Resources Management* 2:161-173.
- Blick, S. A., Kelly, F., and Skupien, J. J. 2004. Chapter 1: Impacts on development of run-off. New Jersey Stormwater Best Management Practices Manual (pp. 1-8). Retrieved from https://www.njstormwater.org/bmp_manual2.htm (Accessed: 19 December 2020).
- Bryan, T.L. and Metaxas, A. 2007. "Predicting suitable habitat for deep-water gorgonian corals on the Atlantic and Pacific Continental Margins of North America" *Marine Ecology Progress Series* 330: 113-126.
- Burns, C.W. and Mitchell, S.F. 1980 "Seasonal succession and vertical distribution of zooplankton in Lake Hayes and Lake Johnson, New Zealand" *Journal of Marine and Freshwater Research* 14(2): 189-204.
- Canencia, M. O. P. and Ascano, C. P. 2017. "Marine zooplankton distribution model and seriation index across different habitat types" *International Journal for Research in Applied Science & Engineering Technology* 5(XI): 1646-1652.
- Chapman, D. 1996. Water Quality Assessment: A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring. University Press. 609 pp.

- Doubek, J.P., Campbell, K.L., Doubek, K.M., Hamre, K.D., Lofton, M.E., McClure, R.P., Ward, N. K. and Carey. C.C. 2018. "The effects of hypolimnetic anoxia on the diel vertical migration of freshwater crustacean zooplankton" *Ecosphere* 9(7): e02332.
- Delgado, L.E. and Marín, V.H. 1997. "EIMS-Antarctica. An Ecosystem Analysis of the Antarctic Krill Fishery in the South Shetland Islands: A 2D (Arc Info Based) Cellular Automata Model of the Krill Fishery". In: Computer Tools for the Sustainable Management of Arid and Antarctic Ecosystems. (eds. F. Santibanez and V.H. Marin). Editorial Tecnografica SA, Santiago. pp. 25-80.
- Embling, C. B., Gillibrand, P. A., Gordon, J., Shrimpton, J., Stevick, P. T. and Hammond, P. S. 2010. "Using habitat models to identify suitable sites for marine protected areas for harbour porpoises (*Phocoena phocoena*)" *Biological Conservation* 143:267-279.
- Golmarvi, D., Kapourchali, M.F., Moradi, A.M., Fatemi, M. and Nadoshan, R.M. 2018. "Study of Zooplankton Species Structure and Dominance in Anzali International Wetland" *Open Journal of Marine Science* 8: 215-222.
- Haberman, J., Laugaste, R., and Noges, T. 2007. "The role of cladocerans reflecting the trophic status of two large and shallow Estonian lakes" *Hydrobiologia* 584(1): 157-166.
- Helenius, L.K., Padros, A. A., Leskinen, E., Lehtonen, H., and Nurminen, L. 2015. "Strategies of zooplanktivory shape the dynamics and diversity of littoral plankton communities: A mesocosm approach" *Ecology and Evolution* 5(10): 2021-2035.
- Huang, Y., Yang, C., Wen, C., and Wen, G. 2019. "S-type dissolved oxygen distribution along water depth in a canyon-shaped and algae blooming water source reservoir: Reasons and control" *International Journal of Environmental Research and Public Health* 16(6): 987.
- Ismail, A.H., Lim, C.C. and Wan Maznah, W.O. 2019. "Evaluation of spatial and temporal variations in zooplankton community structure with reference to water quality in Teluk Bahang Reservoir, Malaysia" *Tropical Ecology* 60(2): 186-198.
- Idris, B.A.G. 1983. Freshwater Zooplankton of Malaysia (Crustacea: Cladocera). Universiti Putra Malaysia. 153 pp.
- Kane, J. and Prezioso, J. 2008. "Distribution and Multi-annual Abundance Trends of the Copepod *Temora longicornis* in the US Northeast Shelf Ecosystem" *Journal of Plankton Research* 30(5): 619-632.
- Kehayias, G., Ramfos, A., Ntzialas, P., Ioannou, S., Bisouki, P., Kyrtzoglou, E., Gianni, A., and Zacharias, I. 2013. "Zooplankton diversity and distribution in a deep and

- anoxic Mediterranean coastal lake" *Mediterranean Marine Science* 14(1): 179–192.
- Khalifa, N., EI-Damhogy, A.K., Fishar, R.M., Nasef, M.A. and Hegab, H.M. 2015. "Vertical Distribution of Zooplankton in Lake Nasser" *Egyptian Journal of Aquatic Research* 41:177-185.
- Korovchinsky, N.M. 1992. Sididae and Holopedidae: Guides to the Identification of Microinvertebrates of the Continental Waters of the World. SPB Academic Publishing. 82 pp.
- Krachler, R.F., Krachler, R., Stojanovic, A., Wielander, B. and Herzig, A. 2009. "Effects of pH on Aquatic Biodegradation Processes" *Biogeosciences Discussions* 6: 491-514.
- Ling, T.Y., Gerunsin, N., Soo, C.L., Nyanti, L., Sim, S.F. and Grinang, J. 2017. "Seasonal Changes and Spatial Variation in Water Quality of a Large Young Tropical Reservoir and Its Downstream River" *Journal of Chemistry* 2017 (Article ID 8153246): 1-16.
- Magurran, A.E., Baillie, S.R., Buckland, S.T., Dick, J. M.,
 Elston, D. A., Scott, E.M., Smith, R.I., Somerfield,
 P.J. and Watt, A.D. 2010. "Long-Term Datasets in Biodiversity Research and Monitoring: Assessing Change in Ecological Communities Through Time" *Trends in Ecology & Evolution* 25(10): 574-582.
- Martynova, D.M., and Gordeeva, A.V. 2010. "Light-dependent behavior of abundant zooplankton species in the White Sea" *Journal of Plankton Research* 32(4): 441-456.
- Meor Hussain, M.A.F., Ahyaudin, A., Amir Shah, R. and Shah, M. 2002 "The Structure and Dynamics of Net-Zooplankton Communities of the Littoral Versus Limnetic Zone of a Typical Embayment in a Small Flow Through Tropical Reservoir" *Jurnal Biosains* 13(2): 23-3.
- Mihu-Pintilie, A., Romanescu, G. and Stoleriu, C. 2014, "The seasonal changes of the temperature, pH and dissolved oxygen in the Cuejdel Lake, Romania" *Carpathian Journal of Earth and Environmental Sciences* 9(2): 113-123.
- Mironga, J.M. 2004. "Geographic Information Systems (GIS) and Remote Sensing in the Management of Shallow Tropical Lakes" *Applied Ecology and Environmental Research* 2(1): 83-103.
- Narvekar, J. and Kumar, S. P. 2014. "Mixed layer variability and chlorophyll a biomass in the Bay of Bengal" *Biogeosciences* 11: 3819-3843.
- Nurul-Ruhayu, M.R., and Yahya, K. 2013. "Trends of sediment loading in catchment areas of Pinang River in Malaysia" *APCBEE Procedia* 5: 128-133.
- Nydahl, A.C., Wallin, M.B., Tranvik, L.J., Hiller, C., Attermeyer,

- K., Garrison, J.A., Chaguaceda, F., Scharnweber, K. and Weyhenmeyer, G.A. 2019. "Colored Organic Matter Increases CO2 in Meso-Eutrophic Lake Water Through Altered Light Climate and Acidity" Limnology and Oceanography 64:744-756
- Oram, B. 2005. "Phosphates in the Environment". Retrieved from https://water-research.net/index.php/phosphates (Accessed: 22 December 2020)
- Panti, C., Giannetti, M., Baini, M., Rubegni, F., Minutoli, R. and Fossi, M.C. 2015. "Occurrence, Relative Abundance and Spatial Distribution of Microplastics and Zooplankton NW of Sardinia in the Pelagos Sanctuary Protected Area, Mediterranean Sea" *Environmental Chemistry* 12(5): 618-626.
- Payne, A.I. 1986. The Ecology of Tropical Lakes and Rivers. John Wiley & Sons. 301 pp.
- Peterson, T., Egbert, S. L., Sánchez-Cordero, V. and Price, K. P. 2000. "Geographic analysis of conservation priority: endemic birds and mammals in Veracruz, Mexico" *Biological Conservation* 93:85-94.
- Pulau Pinang Town and Country Planning Department. 2018.

 Retrieved from http://iplan.townplan.gov.my/public/geoportal?view=semasa (Accessed: 19 December 2020)
- Putra, M.I.H., Lewis, S.A., Kurniasih, E.M., Prabuning, D. and Faiqoh, E. 2016. "Plankton Biomass Models Based on GIS and Remote Sensing Technique for Predicting Marine Megafauna Hotspots in the Solor Waters" IOP Conference Series: Earth and Environmental Science 47 (012015): 1-19.
- Quinton, J. N., Catt, J. A., and Hess, T. M. 2001. "The selective removal of phosphorus from soil" Journal of *Environmental Quality* 30(2): 538-545.
- Quiros, R. 2003. "The relationship between nitrate and ammonia concentrations in the pelagic zone of lakes" *Limnetica* 22(1-2): 37-50.
- Scheef, L.P., Pendleton, D.E., Hampton, S.E., Katz, S.L., Holmes, E.E., Scheuerell, M.D. and Johns, D.G. 2012. "Assessing Marine Plankton Community Structure from Long-Term Monitoring Data with Multivariate Autoregressive (MAR) Models: A Comparison of Fixed Station Versus Spatially Distributed Sampling Data" *Limnology and Oceanography Methods* 10(1): 54-64.
- Shiel, R.J. 1995. A Guide to Identification of Rotifers, Cladocerans and Copepods from Australian Inland Waters. Cooperative Research Centre for Freshwater Ecology.144 pp.
- Straskraba, M., Tundisi, J.G. and Duncan, A. 1993. "State-

- of-the-Art of Reservoir Limnology and Water Quality Management". In: Comparative Reservoir Limnology and Water Quality Management. (eds. M. Straskraba, J.G. Tundisi and A. Duncan). Springer Netherlands. pp. 213-288.
- Volvenko, V. I. 2019. "New net zooplankton geographical information system in the Far East seas and adjacent waters of the Pacific Ocean" Global Ecology and Biogeography 28(12): 1735-1748.
- Wen, G., Li, X., Qiu, X., Cheng, Y., Sun, Y., and Huang, T. 2016. "Characteristics of water pollution in typical reservoirs". In: Water Pollution and Water Quality Control of Selected Chinese Reservoir Basins, The Handbook of Environmental Chemistry. (ed. T. Huang). Springer, Cham. Vol 38. pp.25-94.
- Wetzel, R.G. 2001. Limnology: Lake and River Ecosystems. Gulf Professional Publishing. Oxford. 1006 pp.
- Wiafe, G., Yaqub, H.B., Mensah, M.A. and Frid, C.L. 2008. "Impact of climate change on long-term zooplankton biomass in the upwelling region of the Gulf of Guinea" *ICES Journal of Marine Science* 65(3): 318-324.
- Wishner, K.F., Seibel, B.A., Roman, C., Deutsch, C. Outram, D., Shaw, C.T., Birk, M.A., Mislan, K.A.S., Adams, T.J., Moore, D. and Riley, S. 2018. "Ocean Deoxygenation and Zooplankton: Very Small Oxygen Differences Matter" Science Advances 4(12, eaau5180): 1-8.
- Xing, Z., Fong, D.A., Lo, E.Y.-M. and Monismith, S.G. 2014. "Thermal Structure and Variability of a Shallow Tropical Reservoir" *Limnology and Oceanography* 59(1):115-128.
- Yusoff, F.M., Banerjee, S., Khatoon, H. and Shariff, M. 2011. "Biological Approaches in Management of Nitrogenous Compounds in Aquaculture Systems" *Dynamic Biochemistry, Process Biotechnology and Molecular Biology* 5 (Special Issue 1): 21-31.
- Zorcic, P.O., Matjaz, M., Katarina, K. and Marina. P. 2015. "Nitrate concentration changes in a river and its reservoir within an agriculturally-influenced watershed: The River Ledava (SE Austria and NE Slovenia) case study" *Fresenius Environmental Bulletin* 24(4b):1537-1548.

ACKNOWLEDGMENT

This study was funded by RUI Grant (1001/PBIOLOGI/811243) sponsored by Universiti Sains Malaysia (USM). The authors express sincere gratitude to Russell Shiel for his help in zooplankton identification.