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) (Blanco) Merr and Shorea polysperma (Blanco) Merr
_in Northern Sierra Madre Natural Park Using Maxent

ABSTRACT

This study determined the potential effects of present and future climates on the
geographical distribution of Shorea palosapis (Blanco) Merr. and Shorea polysperma
(Blanco) Merr in Northern Sierra Madre Natural Park (NSMNP) using Maximum
Entropy model. A total of seven models were generated for each species: one Climatic-
Only model, four Partial models (combination of four variable groups with climatic
variables), one Full model (used 30 original variables), and one Final model (used 18
uncorrelated variables after a series of variable reduction methods). The models’ relative
predictive performance was evaluated using Area Under Curve (AUC) and True Skill
Statistics (TSS). The Final model performed best both for S. palosapis (AUC = 0.8763;
TSS = 0.8176) and S. polysperma (AUC = 0.8626, TSS = 0.8332). Analysis of variable
importance revealed that species distributions were largely determined by climatic
variables (34.35%) followed by anthropogenic variables (27.25%) and topographic
variables (24.15%), while vegetation-related (7.58%,) and edaphic variables (6.67%) had
relatively lesser contribution. The probabilities of occurrence of the species changed and
were found to benefit from future climate with increasing suitable habitat range. This
study will provide practitioners with early warning estimates of how climate change may
affect the distribution of endangered species. Furthermore, this will also assist decision-
makers especially in mainstreaming climate change in the NSMNP management plan to
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better conserve potential suitable habitats of priority species.
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INTRODUCTION

The Northern Sierra Madre Natural Park (NSMNP) is
one of the largest and most diverse protected areas (PAs) in
the Philippines. It covers a total of 359,486 ha of terrestrial
and coastal areas in the province of Isabela in northeast
Luzon. It houses numerous species of flora, of which many
are rare and endemic but threatened due to habitat alteration.
Due to its inherent high conservation value, it was selected
to be one of the ten priority sites of the National Integrated
Protected Area System (NIPAS). Through the years,
NSMNP has experienced massive exploitation that led to
the decline of its forest resources and biodiversity (DENR
1997; Nordic Agency for Development and Ecology;, DENR
2001). It is believed that climate change will exacerbate
current conditions of the forests and their biodiversity.

Currently, there is very little knowledge on how future
climates can affect the potential distribution of forest tree
species in the Philippines. Prediction of potential suitable
habitat of these species is critical for conservation and
monitoring, and is also vital information in the restoration
efforts of the country. Nowadays, species distribution models
(SDMs) are increasingly proposed to support conservation
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decision-making. However, evidence of SDMs supporting
solutions for on-ground conservation problems is still
scarce in the scientific literature (Guisan et al. 2013). To
effectively guide conservation actions, modelers need to
better understand the decision process, and decision makers
need to provide feedback to modelers regarding the actual
use of SDM to support conservation decisions (Guisan
et al. 2013). This could be facilitated by individuals
or institutions playing the role of ‘translators’ between
modelers and decision makers.

In the face of ongoing and future changes in climate,
species must adapt or shift their geographical distributions
in order to avoid habitat loss and eventual extinction.
Species will shift their geographic distribution to remain
at equilibrium with climate. However, tropical forest tree
species may not be able to adapt to changing climate due to
rapid and sustained changes in climate (Feeley et al. 2012).
This study aimed to assess the consequences of climate
change on the geographical distributions of S. palosapis
and S. polysperma in the NSMNP using Maximum Entropy
(Maxent) Model. Specifically, the study evaluated and
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compared the relative predictive performance of different
Maxent species distribution models; identified the variables
that affect the geographical distribution of dipterocarp
species; and determined the potential suitable habitats of
dipterocarp species.

Threatened, indigenous and endemic forest tree
species in NSMNP were the priority for species distribution
modeling since their ecological, economical and socio-
cultural values require urgent science-based adaptation
strategies be developed to protect them. On the other
hand, environmental variables were chosen based on
their biological relevance to plant species distribution and
citation frequency in other habitat modeling studies (e.g.
Kumar et al. 2006; Guisan et al. 2007a; Pearson et al.
2007; Muriene et al. 2009). To save a threatened species
is a critical problem in conservation biology because one
needs to know first where the species prefers to live and
what its requirements are for survival (i.e. ecological
niche) (Hutchinson 1957). There are various SDM methods
available to predict the distribution of a species (Guisan and
Zimmermann 2000; Guisan and Thullier 2005, Elith et al.
2006; Guisan et al. 2007a, b; Wisz et al. 2008). However,
comparatively few predictive models have been used for
threatened plant species (Engler et al. 2004). The species
distribution modeling particularly on trees has opened
a new perspective in the field of conservation biology.
Species distribution data is most of the time not available
and collecting such data is costly and labor intensive. Hence,
SDMs could be a reliable alternative of conservationist
since they have in many cases rely on predictive models
for estimating patterns of species distribution and for
making conservation strategies. Moreover, SDMs provide
one of the best ways to overcome sparseness typical of
distributional data, by relating them to a set of geographic
or environmental predictors.

A number of recent studies have proven that Maxent
performs well in predicting species distribution of floral
and faunal species (Baldwin 2009; Kumar and Stohlgren
2009; Trisurat et al. 2009 and 2011; Weber 2011; Garcia
et al. 2013; Singh 2013). Kumar and Stohlgren (2009)
used Maxent to predict potential habitats of Canacomyrica
monticola, athreatened tree species in New Caledonia, using
few occurrence records. Results of Singh (2013) predicted
suitable habitats for two critically-endangered dipterocarp
tree species, Shorea johorensis and Shorea inappendiculata,
in Borneo. Results showed bioclimatic variables had
insignificant effects, given the study was conducted in a
relatively small area. However, factors such as land-use
and tree cover play a prominent role in determining the
distribution of the two species. In Thailand, Trisurat et
al. (2009) and Trisurat et al. (2011) studied the effects of
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climate change on the distributions of both evergreen and
deciduous tree species in peninsular and northern Thailand.
In the Philippines, Garcia et al. (2013) were the first to use
Maxent in predicting geographic distributions and habitat
suitability based on changes in climate for 14 threatened
forest tree species in the Philippines. Of the 14 species,
seven forest tree species were found to likely benefit from
future climate with potential increases in suitable habitat
areas, while the other half will likely experience declines.

This study can provide initial understanding on how
changes in the regional climate will affect the distribution
of S. palosapis and S. polysperma in the NSMNP. It
may further improve understanding of species-habitat
relationships in space and time. The species distribution
models and habitat suitability maps generated may also
be used as basis in the formulation of appropriate science-
based adaptation policies, strategies and measures that can
enhance the resilience of those selected forest tree species
and their natural ecosystem to current and future climate.

MATERIALS AND METHODS
Study Area

The NSMNP lies on the eastern part of Isabela province
covering the municipalities of Maconacon, Divilacan,
Dinapigue and Palanan along the eastern seaboard and San
Pablo, Cabagan, Tumauini, [lagan and San Mariano on the
western side, as bordered by the Cagayan Valley (Figure
1). It includes the mid-section, which stretches from Aurora
to Cagayan, of the Sierra Madre Mountain Range. It is
bounded by the Dikatayan River to the north, Disabuyan
River to the south, Cagayan Valley to the west and the
Philippine Sea to the east (Van der Ploeg et al. 2011).

The NSMNP is home to a large number of
commercially important but severely threatened tree
species of the dipterocarp family such as Shorea spp. and
Hopea spp. It also provides habitats to 240 bird species,
78 of which are endemic. Two of the birds found in the
park are the Philippine Eagle (Pithecophaga jefferyi) and
the endemic Isabela Oriole (Oriolus isabellae), which is
one of the rarest birds in the world (CI 2011). The park is
also home to two groups of indigenous people, the Agta
and the Kalinga, who are highly dependent on its natural
resources for their livelihoods. About 25,000 migrant
farmers and fishermen live within the multiple-use zone of
the park and two million people living in Cagayan Valley
depend on the ecosystem services provided by the park.

Study Framework

The prediction and mapping of potential suitable
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Figure 1. The location and land cover of NSMNP.

habitats for threatened and indigenous species is critical
in the monitoring and restoration of the declining native
populations. However, a challenge to habitat modeling
approaches is that the distribution data of these species
are often sparse and clustered (Ferrier et al. 2002, Engler
et al. 2004). Nowadays, species distribution modeling
tools are becoming increasingly popular, and are widely
used in ecology (Elith et al. 2006, Peterson 2006). These
models help establish the underlying relationships between
the occurrence of species in a particular area and its
environment.

Forest trees species distribution, or species habitat
requirement is defined by certain environmental variables,
and the optimal combination of these factors allows
a particular species to thrive in certain areas. This set
of environmental variables for plants may directly or
indirectly affect its patterns of abundance and distribution
in NSMNP. The variables are: topographic factors, climatic
factors, anthropogenic factors or threats to species loss,
edaphic factors and vegetation-related factors (Figure 2).
Thus, the study emphasizes the interplay of forces between
environmental variables that affect the overall suitability of
a given species in a particular region. The Maxent modeling
technique then recognizes the relationship between the
known range of the species and environmental factors, and
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Figure 2. The research framework employed in the study.

uses this relationship to identify species distribution.
Collection and Selection of Species Occurrence Records

The occurrence records of the forest tree species
used for this research come from two sources: biodiversity
assessments conducted in NSMNP under the B+WISER
program; and georeferenced database developed by Ramos
et al. (2012) which contains 2,067 records of 47 threatened
forest tree species of the Philippines. These species are often
rare and have limited occurrences, posing challenges for
creating accurate species distribution models. As such, S.
palosapis (Blanco) Merr and S. polysperma (Blanco) Merr
with 24 and 27 occurrences, respectively, were selected for
the species distribution modeling.

Environmental Variables

Thirty environmental variables in lkm x lkm
resolution were used as potential predictors of species
distribution. All data were projected and masked to the
NSMNP boundary and converted to 1 km Environmental
Systems Research Institute (ESRI) American Standard
Code I1 (ASCII) grid format (.asc). The variables were then
classified into five groups: 1) climatic, 2) topographic, 3)
edaphic, 4) vegetation and, 5) anthropogenic. In addition, it
is assumed that environmental variables were stable, except
climatic variables (Table 1).

Species Distribution Modeling

Maxent modeling software v3.3 was used for this
study. Pre-selected independent variables based on
previous studies served as predictors while the occurrence
records of selected dipterocarp species were the dependent
variable for the study. The data were then entered into the
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Table 1. Summary of environmental variables used in the study.

Variable | Variable (Unit) Description/Source
Climatic Factors
Bio 1 Annual mean temperature | The mean of all the monthly mean temperatures. Each monthly mean temperature is the
°O) mean of the monthly maximum and minimum temperatures over the whole year
Bio 2 Mean diurnal temperature | The mean over the whole year of the monthly diurnal temperature ranges. Each monthly
range (mean(period diurnal range is the difference between that month's maximum and minimum
max-min) (°C) temperature.
Bio 3 Isothermality The mean diurnal range (parameter 2) divided by the annual temperature range (parameter
(Bio 2 + Bio 7) 7).
Bio 4 Temperature seasonality The temperature Coefficient of Variation (C of V) is the standard deviation of the monthly
(CofV) mean temperatures expressed as a percentage of the mean of those temperatures. For
this calculation, the mean in degrees Kelvin is used. This avoids the possibility of
having to divide by zero, but it does mean that the values are usually quite small.
Bio 5 Max temperature of The highest maximum temperature in all months of the year.
warmest month (°C)
Bio 6 Min temperature of cold- | The lowest minimum temperature in all months of the year.
est month (°C)
Bio 7 Temperature annual range | The difference between the max temperature of warmest period and the min temperature
(Bio 5-Bio 6) (°C) of coldest period.
Bio 8 Mean temperature of The wettest quarter of the year is determined (to the nearest week), and the mean
wettest quarter (°C) temperature of this period is calculated.
Bio 9 Mean temperature of The driest quarter of the year is determined (to the nearest week), and the mean
driest quarter (°C) temperature of this period is calculated.
Bio 10 | Mean temperature of The warmest quarter of the year is determined (to the nearest week), and the mean
warmest quarter (°C) temperature of this period is calculated.
Bio 11 Mean temperature of The coldest quarter of the year is determined (to the nearest week), and the mean
coldest quarter (°C) temperature of this period is calculated.
Bio 12 Annual precipitation (mm) | The sum of all 12 monthly precipitation estimates.
Bio 13 Precipitation of wettest The precipitation of the wettest month
month (mm)
Bio 14 | Precipitation of driest The precipitation of the driest month
month (mm)
Bio 15 Precipitation seasonality | The Coefficient of Variation (C of V) is the standard deviation of the weekly precipitation
(CofV) estimates expressed as a percentage of the mean of those estimates.
Bio 16 | Precipitation of month The wettest quarter of the year is determined (to the nearest week), and the total
(mm) precipitation over this period is calculated.
Bio 17 | Precipitation of driest The driest quarter of the year is determined (to the nearest week), and the total
quarter (mm) precipitation over this period is calculated.
Bio 18 Precipitation of warmest | The warmest quarter of the year is determined (to the nearest week), and the total
quarter (mm) precipitation over this period is calculated.
Bio 19 [ Precipitation of coldest The coldest quarter of the year is determined (to the nearest week), and the total
quarter (mm) precipitation over this period is calculated.
Edaphic Factors
Geology | Geology Bureau of Agricultural Research/Bureau of Soils and Water Management-Department of
Agriculture
soil class | Soil type classification Bureau of Soils and Water Management-Department of Agriculture
Vegetation-Related Factors
land Philippine land cover National Mapping Resources Information Authority/Forest Management Bureau
cover classification (2010)
NDVI Normalized Difference Processed Landsat 5 image using ERDAS 9.2
Vegetation Index (-1 to 1)
Topographic Factors
aster_ Elevation (m) Derived from Advanced Spaceborne Thermal Emission and Reflection Radiometer
elev (ASTER) Global Digital Elevation Model (GDEM) 30m of NASA
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Table 1. Summary of environmental variables used in the study.

Euclidean distance
(distance in meters)

dist_rivers www.geofabrik.de

Variable | Variable (Unit) | Description/Source
Topographic Factors
aster_slope Slope (%) Derived from Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) Global Digital Elevation Model (GDEM) 30m of NASA
aster_aspect Aspect Derived from Advanced Spaceborne Thermal Emission and Reflection Radiometer

(ASTER) Global Digital Elevation Model (GDEM) 30m of NASA

Anthropogenic Factors

Population Global Population
Distribution Database
dist_roads Euclidean distance www.geofabrik.de

(distance in meters)
Euclidean distance
(distance in meters)

dist_settlements www.geofabrik.de

LandScan Global Population Database

software. During modeling,occurrence records were further
subdivided into two parts: 75% were used to generate
species distribution models while the remaining 25% were
kept as independent data to test the accuracy of each model
(Huberty 1994, Franklin 2009; Gracia et al. 2013). The
software had an upper limit of 1000 for each run. Different
sets of testing and training samples were randomly selected
for each iteration. Maxent utilized background points in
place of absence data. Samples were randomly selected
from a set of 10,000 background points to represent pseudo-
absence points (Phillips et al. 2006, Barbet-Massin et al.
2012).

A total of seven models for each dipterocarp species
were created in this study: ‘Climatic-Only Model’,
Climatic-Topographic Model’, ‘Climatic-Edaphic Model’,
‘Climatic-Anthropogenic Model’, ‘Climatic-Vegetation
Model’, ‘Full Model’ and ‘Final Model’. The ‘Climatic-
Only Model' considered only the climatic factors as
variables while the ‘Full Model’ took into account all 30
environmental variables. The ‘Final Model’ is the result
from a series of variable reduction and selection stages, a
methodology adopted from Garcia et al. (2013) and Kendal
etal. (2013). Each model was replicated five times using the
five synthetic climate scenarios developed by IRI (Basel-5
and Projected1-5).

Reduction and selection of variables were done
through pairwise correlation values to eliminate redundancy
with the independent variables (Rinnhofer et al. 2012).
This was done using Principal Component Analysis tool in
ArcGIS as demonstrated by Garcia et al. (2013). After this
test, the variables were trimmed down to just 18 (Figure 3).

Maxent provides table of analysis of variable
contributions that summarizes the percent predictive
contribution of each environmental variable during model

building. Analysis of variable relative contribution is one
natural application of SDM. Using this analysis, variables
that matter most in SDM were determined. As the percent
contribution increases, the influence of a particular variable
also increases. Alternatively, Maxent used jackknife test
as a measure of the relative importance of each variable
within the model. This test calculated the model gain for
each variable when used in isolation and the average gain
for the remaining variables when a particular variable is
omitted from the model to determine which variable are the
most important individually to the Maxent models of the
species (Phillips et al. 2000).

This study used logistic format of probability
distribution where each pixel has a probability value
ranging from 0 to 1 (Phillips et al. 2006). Pixels with high
probability value are areas with better predicted conditions
(Trisurat et al. 2011). Hence, as the value departs from 0 to
1, it indicates an increasing level of suitability. The default
probability of occurrence was classified into 10 classes
of equal interval. Thus, value from 0 to 0.5 indicated
unsuitable habitats where species will unlikely be found,
while 0.5 to 1.0 represented suitable habitats where species
will likely be present.

Evaluation and Assessment of Model Performance

The Area under the Receiver Operating Characteristics
(ROC) curve was used to evaluate model performance
as introduced by Swets (1988). The AUC is a threshold
independent measure of a model’s ability to discriminate
presence from absence (or background points). The AUC
values vary from 0.5 to 1 where AUC value of 0.5 shows
that model prediction were not better than random. The
AUC values departing from 0 to 1 means increasing
model accuracy. The average AUC of all 7 models were
compared and ranked. The proposed classification of
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Figure 3. The research flow diagram.

AUC by Swets (1988) was used to interpret the AUC
(Table 2). Among the traditional approaches of SDM,
Maxent calculates AUC values differently because it
defines specificity using the predicted area and not true
commission (Phillips et al. 2006).

Another evaluation method employed in this study is
the True Skill Statistics (TSS). It is also known as Hanssen-
Kuipers Discriminant that compares the number of correct
forecasts, minus those forecasts, minus those attributable
to random guessing to that of a hypothetical set of perfect
forecast (Allouche et al. 2006). TSS is a binomial test
that is threshold dependent (Herkt 2007) and can be used
to compare prediction performance independent of both
validation dataset size and prevalence (Allouche et al.
2006). The scale on how TSS statistics can be interpreted
is shown in Table 3 (as cited by Garcia et al. 2013 from
Monserud and Leemans 1992).

Table 2. The AUC classification used in the interpretation

of results.
AUC Value Description
090-1.0 Excellent
0.80-0.90 Good
0.70 - 0.80 Fair
0.60-0.70 Poor
<0.60 Fail

Species Distribution Change

Parmesan (2006) reported that species can shift their
distributions, or migrate, to remain at equilibrium with
climate. The Maxent outputs were continuous probability of
occurrence (0.0 — 1.0) where higher probability values mean
better suitability and lower values mean poorer suitability.
Predicted probability values were transformed to binary
prediction. The predicted values equal to or greater than 0.5
was assigned as ‘present’. On the other hand, values less than
0.5 was for ‘absent’. The percentage change between the
area of suitable and unsuitable habitats was also determined.

RESULTS AND DISCUSSION
Model Evaluation Using AUC values

All AUC values were greater than 0.5. Based on the
AUC classification by Swets (1988), it could be concluded

Table 3. TSS values and interpretation.

TSS Value Degree of Agreement
0.00 - 0.05 None
0.05-0.19 Very Poor
0.20-0.39 Poor
0.40-0.54 Fair
0.55-0.69 Good
0.70-0.84 Very Good
0.85-0.99 Excellent

1.00 Perfect
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that all seven probability models for S. palosapis and S.
polysperma species showed better performance than a null
model. As seen in Figures 4 and 5, the models’ level of
accuracy derived from test points (light bars) are relatively
lower compared to the training points (dark bars). This
difference may have occurred because of fewer test points
and their random distribution. However, AUC of test points
was used in the analysis (7risurat et al. 2009; Trisurat et al.
2011; Garcia et al. 2013).

For S. palosapis, the Final Model had the best
performance with an AUC value of 0.8763, while the Full
Model ranked second with an AUC value of 0.8706. The
Climatic-Only model performed quite well (AUC=0.8262).
Among the Partial Models, the Climatic-Vegetation
worked best (AUC=0.8542) while Climatic-Anthropogenic
(AUC=0.7708) was the least performing one. Climatic-
Topographic and Climatic-Edaphic had AUC values of
0.8381 and 0.8304, respectively. It should be noted however
that the models had fair to good predictive performance,
with AUC values ranging from 0.7708 to 0.8763 (Figure
4). Similar to S. palosapis, the Final Model showed the
best performance (AUC=0.8626) for S. polysperma. The
Climatic-Only model performed fairly (AUC=0.7080)
while the Partial Models are in the following order based
on decreasing AUC values: Climatic-Vegetation>Climatic-
Edaphic>Climatic-Topographic>Climatic-Anthropogenic.
The Climatic-Anthropogenic model showed poor
performance with AUC equivalent to 0.6741 but it is still
better than a null model. The Full Model had AUC 0f0.8273
which ranked third overall. Among the seven models, one

model had poor performance, three had fair performances
and the remaining three had good performances (Figure 5).

In general, the Final Models consistently outperformed
all other models for both S. palosapis and S. polysperma
species. This suggests that a model with a diversified set
of variables is more desirable than the more complicated
ones (Nicopior 2014). However, differences in the AUC
values were also observed as performances varied from
fair to good (S. palosapis) and poor to fair to good (S.
polysperma). These differences might be attributed to the
generalization of variables for both dipterocarp species.
It should be noted that not all forest tree species of the
same family or even of the same genus live in the same
environmental conditions. Fernando (2009) found out
that dipterocarps could be found in at least four different
forest formations, including tropical lowland evergreen
rainforest, tropical lower montane rainforest, tropical
semi-evergreen rainforest and forest over limestone. Other
forest habitats such as the freshwater, peat swamp forest
and forests over ultramafic rocks in the country may likely
contain dipterocarp species if extensive surveys could be
conducted. Thus, each species may have different sets of
environmental requirements restricting their occurrence
and distribution (Garcia et al. 2013).

Model Evaluation Using TSS values
The True Skill Statistics (TSS) method (Allouche et

al. 20006) is also called Hanssen-Kuipers Discriminant, it
is a threshold dependent measure used for assessing model
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Figure 4. AUC values of seven probability models for Shorea palosapis (Blanco) Merr.
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Figure 5. AUC values of seven probability models for Shorea polysperma (Blanco) Merr.

performance. Average TSS values were computed with five
replicates for the seven probability models and were then
ranked (Table 4). Based on the TSS values, the Final Model
for S. polysperma (TSS=0.8332) performed very well.
TheS. palosapis Final Model was found to perform as well
as the Climatic-Anthropogenic model for the same species
(TSS=0.8176). However, the Climatic-Anthropogenic
model for S. polysperma showed poor performance
(TSS=0.2977). The Climatic-Only model was second least
performing but its performances are still considered fair
for S. polysperma (TSS=0.4718) and good for S. palosapis
(TSS=0.5460). The predictive performances of the models
improved when the climatic variables were combined with
other environmental variable groups, except in the Climatic-
Edaphic model of S. palosapis (TSS=0.4310) and Climatic-
Anthropogenic model of S. polysperma (TSS=0.2977).
This difference suggests that a model with a diversified set
of variables as shown by the Final model is more desirable
than the more complicated ones (Nicopior 2014).

To compare the results of the two evaluation methods,
the AUC and TSS values of all models for both species
are presented in Table 5. The rankings of all seven models
based on TSS values were not the same as with the AUC-
based index. However, the values for the Final Models
always ranked on top for both species. This suggests that
the relative predictive performance of a model improves
as the number of variables increase, but only up to a

certain extent. For instance, the Final Model with only 18
variables performed better than the Full Model with all 30
original variables. Again, this suggests that a model with a
diversified set of variables is more desirable than the more
complicated ones (Nicopior 2014). Homer and Lemeshow
(2000) suggested that patterns or relationships between
variables may be more stable when fewer variables
are involved, thus it is easier to make generalizations.

Determinant Variables in the Pre-Final Modeling

The Final model was used in determining the
variables’importance since it showed the best performance
among the seven probability models. Out of the 30 original
variables, only 18 environmental variables were used in
the Final Modeling and these are: climatic (Bio2, Bio3,
Bio4, Bio6, Bio7, Biol4, Biol7); edaphic (geology,

Table 4. TSS values for all seven models for S. palosapis
and S. polysperma.

Models 8. palosapis S. polysperma
(Rank) (Rank)
Climatic-Only 0.5460 (5) 0.4718 (6)
Climatic-Topographic 0.5944 (3) 0.7099 (2)
Climatic-Edaphic 0.4310 (6) 0.6522 (4)
Climatic-Vegetation 0.5877 (4) 0.6819 (3)
Climatic-Anthropogenic 0.8176 (1) 0.2977 (7)
Full Model 0.6751 (2) 0.5058 (5)
Final Model 0.8176 (1) 0.8332 (1)
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Table 5. Comparisons of AUC and TSS values for all seven models of S. palosapis and S. polysperma.
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S. palosapis S. polysperma
Models AUC (Rank) TSS (Rank) AUC (Rank) TSS (Rank)
Climatic-Only 0.832 (6) 0.546 (5) 0.7080 (6) 0.4718 (6)
Climatic-Topographic 0.8381 (4) 0.5944 (3) 0.7755 (5) 0.7099 (2)
Climatic-Edaphic 0.830 (5) 0.4310 (6) 0.7833 (4) 0.6522 (4)
Climatic-Vegetation 0.854 (3) 0.5877 (4) 0.8425 (2) 0.6819 (3)
Climatic-Anthropogenic 0.771 (7) 0.8176 (1) 0.6741 (7) 0.2977 (7)
Full Model 0.871 (2) 0.6751 (2) 0.8273 (3) 0.5058 (5)
Final Model 0.876 (1) 0.8176 (1) 0.8626 (1) 0.8332 (1)
soil type); vegetation-related (Land cover, NDVI; 0.70) was retained and included in the Final Model. Each

topographic (ASTER Elevation, ASTER_Slope, ASTER
Aspect, distance to rivers); and anthropogenic (human
population, distance to roads, distance to settlements).

Multi-collinearity Test. All the variables were tested for
multi-collinearity by examining the cross-correlations
(Pearson correlation coefficient, r) among the variables.
This was done to avoid misinterpretations of model’s results
arising from either positive or negative collinearity and to
facilitate interpretation. Only one variable (r > 0.70) from
a set of highly cross-correlated variables was included in
the Final Model. Seventeen climatic variables were highly
correlated to at least two variables. Of the 17 variables,
12 variables had the highest counts of highly correlated
variables (Counts = 16). The minimum temperature of
coldest month (Bio6) was correlated to 15 other variables
while four other variables, annual temperature range (Bio7),
precipitation of driest quarter (Biol7), precipitation of
coldest quarter (Bio19) and elevation, were correlated with
13 other variables. Of the 13 correlated variables, elevation
had negative linear correlations with eight climatic
variables and positive linear correlations with five climatic
variables. Seven temperature variables (r value ranges
from -0.8420 to -0.8476) and one precipitation variable,
precipitation seasonality (Biol5) (r =-0.7748) had negative
linear correlations with elevation, which affirmed the fact
that temperatures are higher in lower elevations (Shepson
2003). In contrast, elevation had positive linear correlations
with five other precipitation variables (r value ranges from
0.7501 to 0.8256). Thus this again affirmed the fact that the
chance of rainfall is higher in higher elevations. According
to PAGASA, the amount of rainfall that we can experience
depends on the geographical location. In the Philippines,
the east coast can see over 5,000 mm especially in the
mountainous region like the NSMNP. The remaining 13
environmental variables that had no correlation with the
other variables were used in the Final Model.

Variable Reduction and Selection. The highly correlated
variables were classified into eighteen groups. Only one
variable from each set of highly correlated variables (r >

set of highly correlated variables were further analyzed,
and from each set, one variable set was selected to be
included in the Final Model. The selections were based on
the average relative importance of the variable in predicting
species probability of occurrence using the Climatic-Only,
Partial and Full Models. For instance, in Group II, which
includes the precipitation of driest quarter (Biol7) and
precipitation of coldest quarter (Bio19), the precipitation of
driest quarter (Bio17) was retained because it ranked second
overall (with an average contribution of 16.5871%) while
the precipitation of coldest quarter (Biol19) ranked only
eighteenth (1.6842%). In Group VII, 12 climatic variables
(six variables each under temperature and precipitation)
were clustered together. Among the 12 climatic variables, the
precipitation of driest month (Bio14) was retained because
it ranked fourteenth overall (8.1222%). The precipitation
of driest month (Biol4) is followed by the precipitation
of wettest month (Biol3) (1.8269%) and maximum
temperature of warmest month (Bio5) (1.2051%), while the
other nine climatic variables showed very little contribution
to the models (average contribution ranges from 0.0350%
to 0.8651%).

After the selection, the number of environmental
variables went down from 30 to 18. Nevertheless, all five
variable groups were still represented. All variables from
four of the five classifications were retained, except for
climatic variables which were reduced from 19 to seven.
This explains that species probability of occurrence cannot
be explained by one variable group alone but the interplay
of forces of all variable groups. It is also worthy to note
to carry out a series of variable reduction and selection
methods prior to species distribution modeling primarily
to reduce errors in the model especially those caused by
spatial autocorrelation of the presence data or the multi-
collinearity of environmental variables used.

Determinant Variables in the Final Modeling

In order to meet the third objective, Final Modeling
was implemented using only the variables that passed the
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Pre-Final modeling stages. The Final Model was fitted
using 18 environmental variables. It was run with five
replicates (representing the five synthetic climate scenarios)
and was then averaged. Each model replicate was set for
1,000 iterations to allow enough time for the model to
converge, though the number of iterations was not usually
maximized because iterations automatically stop when the
convergence threshold has already been satisfied. In the
Final Modeling, replicates had iterations ranging from 440
to 700 for S. palosapis, and 500 to 840 for S. polysperma.

Analysis of Variable Importance

Among the seven climatic variables used in predicting
the species distribution, precipitation of driest quarter
(Bio17) had the highest contribution (10.76%), followed
by isothermality (Bio3) with 10.19% (Figure 6). This
means that these two climatic variables explained the
occurrence of the two dipterocarp tree species. However,
the sole occurrence of S. palosapis is determined by the
annual temperature range (Biol7) with an average percent
contribution of 11.62%. Temperature seasonality (Bio4)
had the least average percent contribution to the Maxent
models of the two dipterocarp tree species with only
0.60%. According to Symington (1943) and Wyatt-Smith
(1963) as cited by Appanah et al. 1998, the distributions
of dipterocarps in Asia particularly in the southeast asia
are being controlled by climatic conditions at different
elevation gradient. Furthermore, the conjunction of altitude
and other natural barriers obstructed its distribution. The
dipterocarps occupy several phytogeographical regions
that mainly conform to climatic and ecological factors.

As to the topographic variables used in predicting
distributions of S. palosapis and S. polysperma, slope had the
highest contribution (11.58%) followed by distance to rivers
with an average contribution of 7.28%. Elevation had the
least average contribution (2.52%) to the Maxent models of
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Shorea palosapis

Shorea polysperma

Figure 6. Percent contribution of climatic variables to the
distribution of two Dipterocarps.
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S. palosapis species while for S. polysperma, aspect (0.74%)
had the least influence. As to the anthropogenic variables
used in predicting distribution of the two species, distance
to roads had the highest contribution (27.15%). Distance to
settlement and human population had lesser average percent
contribution to the Maxent models of the dipterocarp tree
species with 3.27% and 2.83%, respectively (Figure 7).
Trisurat et al. (2009) also found that anthropogenic factors
such as distance to road and village are also important and
negatively correlated to the distribution of tree species in
Northern Thailand. In his study, importance of distance
to road and village reached up to 21.6% and 17.1%,
respectively. Another study conducted by Snelder et al.
(2013) projected the impacts of land use change, including
the planned construction of a main road crossing the
NSMNP, on forest bird distribution. The researchers found
that land use change, especially the creation of access
points for logging and land transitions, will be a major
influence on species distributions. Population also showed
low contribution with 5.10%, on the average. For edaphic
variables, geology (4.02%) had greater impact than soil type
(2.59%) on predicting the occurrence of two dipterocarp
tree species. For the vegetation-related variables, land cover
(6.7217%) had a greater impact than NDVI (1.4082%) on
predicting the occurrence of two dipterocarp tree species.

Overall, predicting the occurrence of the two tree
species was largely determined by climatic variables
(34.35%) followed by anthropogenic variables (27.25%)
and topographic variables (24.15%). Vegetation-related
and edaphic variables had relatively lesser contribution
with 7.58% and 6.67%, respectively (Figure 8). Similar
trend was observed by Garcia et al (2013) wherein climatic
variables contributed less than the biophysical variables
(e.g topographic, edaphic, anthropogenic, vegetation).
However, it does not necessarily mean that biophysical
variables are more important than climatic variables as the
biophysical and bioclimatic variables are inherently spatially
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Figure 7. Percent contribution of four variable groups to the
distribution of two Dipterocarps.
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and temporally autocorrelated (Schrag et al. 2007). It is
instead more likely that groups of biophysical variables are
acting together to influence the occurrence of the species.

Jackknife Test of Variable Importance

The Jackknife test calculates the “model gain” when
one variable is used in isolation and the “average gain” for
the model which used all variables except one (Garcia et al.
2013; Phillips et al. 2006). Variable with highest gain when
used in isolation is precipitation of driest quarter (Biol7).
Regularized training gain for this variable is 0.5683, which
therefore appears to have the most useful information by
itself. It is then followed by annual temperature range (Bio7)
with training gain of 0.5519. The variable that decreases the
gain the most when it is omitted is distance to rivers with a
regularized training gain equal to 1.3266, which therefore
appears to have the most information that is not present in
the other variables. On the other hand, for S. polysperma,
results of the jackknife test showed that precipitation of
driest quarter (Biol7) is the most important variable since
it gives the highest gain (0.4391) when used singly. This
implies that precipitation of driest quarter (Biol7) has
the most the most useful information by itself, followed
by annual temperature annual (Bio7) with 0.4192. The
variable that decreases the gain the most when it is omitted
is distance to roads with a regularized training gain equal
to 1.1590, which means that it has the most information not
present in the other variables.

Potential Species Distributions

Maxent outputs in logistic format of species probability
distribution were generated in this study wherein each pixel
has a probability value ranging from 0 to 1 (Phillips et al.
2006). This is useful for displaying information whether
the species is either suitable or unsuitable in a particular
area. Pixels with high probability value are areas with

better predicted conditions (7risurat et al. 2011). Hence,
as the value departs from 0 to 1 indicates increasing level
of suitability. The default probability of occurrence was
classified into 10 classes of equal interval. Thus, value
from0O to 0.5 indicated unsuitable habitats where species
will likely not to be found, while 0.5 to 1.0 represented
suitable habitats where species will likely to be present.

Areas which have darker blue color indicate the high
probability of occurrence of S. palosapis (Figure 9). As
the color fades probability of occurrence decreases. About
11,543.21 ha are suitable to S. palosapis. It is worthy to note
however that the whole 11,543.21 ha has varying degree of
suitability to S. palosapis. Distribution of the area based
on suitability is as follows: fairly suitable (5,689.15 ha),
moderately suitable (2,720.90 ha), suitable (1,813.93 ha),
very suitable (906.97 ha) and extremely suitable (412.26
ha). Under future climate, S. palosapis will gain more
suitable ecological niche. Suitable areas will increase from
11,543.21 ha under baseline climate scenario to 14,264.11
ha under future climate scenario representing about 24%
increase.

The map using baseline climate scenario (A) predicted
high probability of occurrence in western and eastern
sections of Ilagan, northeastern part of Palanan close to the
eastern seaboard and some part in Divilacan (Figure 10).
Total suitable area under baseline climate scenario for S.
polysperma is around 13,522.04 ha. Under future climate,
the extent of unsuitable habitat areas decreased by 5.14%
while the extent of suitable habitat areas increased by 100%.
This suggests that S. polysperma will benefit from future
climate since the prediction revealed an increase in suitable
area from 13,522.04 ha to 27,044.09 ha. The map using
baseline climate scenario (A) shows a high probability of
occurrence in the western and eastern sections of Ilagan,
northeastern part of Palanan close to the eastern seaboard
and in some parts of Divilacan.

In the study of Trisurat et al. (2009), the total extent of
occurrences under current conditions and under predicted
climate condition in 2050 are not substantially different
from most plant species. An increase in total suitable areas
was observed for the twelve plant species. For instance,
forecasted climate leads to an increase from 19% to 29%
in the suitable location of Hopea odorata in 2050. Other
plant species that gained at least 10% in suitable areas
are: Dalbergia conchinchinnensis, Pinus kesiya, Pinus
merkusii, Wrightia tomentosa, Dipterocarpus alatus and
Mangifera spp. Another study of Trisurat et al. (2011)
found out that 35 out of 66 tree species will gain more
niches under the predicted climate conditions. Garcia et al.
(2013) also found that seven species: Afzelia rhomboidea,
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Figure 9. Predicted suitable and unsuitable habitats of S. palosapis using (A) baseline climate scenario; (B) projected
climate scenario. Blue colors show area with better predicted conditions. Black dots show species occurrence.

Koordersiodendron pinnatum, Mangifera altissima, Shorea
contorta, Shorea palosapis, Shorea polysperma and Vitex
parviflora, will likely benefit from future climate change.

CONCLUSIONS AND RECOMMENDATIONS

Each species responds differently to a changing
environment. Thus, species composition, communities and
even ecosystems vary in different ways from one place to
another, in response to climate change (/PCC 2014). The
impacts of projected climate changes on the vegetation of
the lowland tropics are currently poorly understood. Hence,
this study evaluated the consequence of climate change
on the geographical distribution of S. palosapis and S.
polysperma in the NSMNP. The study also explored which
species distribution model performed best by evaluating
and comparing the relative predictive performance of seven
probability models for each species. The environmental
variables with the highest contribution in the geographic
distribution of S. palosapis and S. polysperma were
determined based on the selected best performing model.

The assessment of model predictive accuracy is one
fundamental issue in the development of SDMs (Guisan and
Thuiller 2005; Barry and Elith 2006). Thus, this study used
to two statistics measures to assess the model performance:
(1) the Area under Receiver Operating Characteristics
(ROC) Curve Analysis (AUC) and (2) True Skill Statistics
(TSS). Using the proposed AUC classification by Swets
(1988), all seven probability models for both S. palosapis
and S. polysperma showed performance that are better than
random mode as indicated by the AUC values greater than
0.5. The Final model performed best both for S. palosapis
(AUC = 0.8763; TSS = 0.8176) and S. polysperma (AUC
= 0.8626; TSS = 0.8332). The ranking of all seven models
based on TSS values are not exactly the same as the AUC-
based index except for the Final model that always ranked
on top for both species and Climatic-only model that
always placed sixth. This suggests that the model’s relative
predictive performance improves as the number of variables
increase but only up to a certain extent. For instance, the
Full model with all 30 original variables performed worse
compared to the Final model with only 18 variables. This
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Figure 10. Predicted suitable and unsuitable habitats of S. polysperma using (A) baseline climate scenario; (B) projected
climate scenario. Blue colors show area with better predicted conditions. Black dots show species occurrence.

explained that a series of variable reduction methods (e.g
Multi-collinearity and Jackknife tests) led to the best
performing model that has few variables. Homer and
Lemeshow (2000) suggested that patterns or relationships
between variable may be more stable when fewer variables
are involved, thus, easier to make generalizations.

In general, analysis of variable importance using the
Final model revealed that predicting the occurrence of the
two tree species was largely determined by climatic variables
(34.35%) followed by anthropogenic variables (27.25%)
and topographic variables (24.15%) Vegetation-related and
edaphic variables had relatively lesser contribution with
7.58% and 6.67%, respectively. On the average, the top
five predictors with the highest contribution are: distance
to roads, slope, precipitation of driest quarter, isothermality
and distance to rivers. However, it is important to reiterate
that forest tree species distribution or “species habitat
requirement” is defined by the environmental variables
where they occur and optimal combination of these factors
allows a particular forest tree species to persist in certain

areas. This set of environmental variables for plants may
directly or indirectly affect its patterns of abundance and
distribution in NSMNP. Thus, the study emphasized the
interplay of forces between environmental variables that
affect the overall suitability of species in a particular region.
The model affirms the relationship between species known
range and environmental factors and uses this relationship
to identify species distribution.

In terms of potential distribution, results also showed
that the probability of occurrence of the species studied
changed under the projected climate scenario. Since
this study was focused on the potential effects of present
and future climates on natural system by evaluating the
behavior of S. palosapis and S. polysperma in terms of their
geographical distribution under different climate scenarios,
all variables were treated as constant except climatic
variables. The comparison of Maxent logistic predictions
for present and future distributions showed that both species
were found to benefit from future climate with increasing
suitable habitat range. Moreover, it is important to note that
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the distributions of dipterocarps in Asia particularly in the
southeast asia are being controlled by climatic conditions at
different elevation gradient. Furthermore, the conjunction of
altitude and other natural barriers obstructed its distribution.
The dipterocarps occupy several phytogeographical regions
that mainly conform to climatic and ecological factors.

Species probability distribution maps will provide
conservation practitioners with estimates of the spatial
distributions of species requiring more attention.
Furthermore, this will greatly contribute to decision-makers
especially in mainstreaming climate change in the NSMNP
management plan to better conserve potential suitable
habitats of priority species. The identification of potential
suitable habitat is also beneficial in strategic planning,
particularly in the light of inadequate funds and resources.
Predictive distribution maps are also prerequisite to many
aspects of resource management, conservation planning
such as biodiversity assessment, reserve design, population,
community and ecosystem modeling, invasive species, risk
assessment, and predicting the effect of climate change on
species and ecosystem, which was the focused of this study.
The potentials of species distribution modeling (SDM)
have already been set and a lot of research gaps on the
aforementioned fields are already identified as well. With
those inmind, hopefully, conservation practitioners and other
stakeholders must be capacitated on the use of SDM tools
especially the user-friendly, free and open source application
like Maxent modeling software (Phillips et al. 20006).
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