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ABSTRACT 
 

Near-infrared spectroscopy was assessed for the prediction of moisture content (MC) and caffeine content (CC) of 

ground “Barako” roasted coffee. Individual models were developed using a chemometric analysis of the NIR spectra 

(900-1700 nm). Partial least squares regression (PLSR) cross-validation and validation results showed that the MC 

models could be used for at least quality assurance applications. However, the CC model for PLSR cross-validation 

can only be used for rough screening and approximate calibration applications due to low RPD (2.000) and R2 

(0.755) values. The results for the validation models of CC obtained lower RPD (0.220) and R2 (0.136) that it did not 

pass for any use or application. The results of the PLSR modeling identified significant wavelengths based on the 

regression coefficient and variable importance of projection. These wavelengths were used to develop multiple linear 

regression (MLR) models. MC model, with 3 wavelengths, was suitable for most research applications with an RPD 

= 2.600 and R2 = 0.851. CC model, with 8 wavelengths, did not pass for any use or application due to poor 

predictive performance (RPD = 1.378, R2 = 0.471). The results showed that only the MC models can be used for 

quality assessment of roasted coffee.  
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INTRODUCTION 
 
Coffee roasting is an essential process for green 
beans to exhibit different flavors and aromas that 
can be categorized into several degrees of roasting. 
Each roasting condition would result in different 
kinds of taste and aroma profiles, as well as physical 

and chemical properties. Some of the determinants 
of roasting degree include color, aroma, sucrose 
content, acidity, moisture content, and caffeine 
content. However, there are still no reliable methods 
of roasted coffee authenticity, especially for the cv. 
Liberica variety except for manual inspection and 
coffee cupping which can only be done by coffee 
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experts. Obtaining the determinants of the roasting 
degree would also be time-consuming and will 
also require different kinds of standard tests. While 
it is true that coffee possesses a unique taste and 
aroma, it is also known to be associated with the 
chemical caffeine which stimulates the alertness of 
the brain and relieves drowsiness. The compound, 
1,3,7-trimethylxanthine, or more commonly 
known as “caffeine” was originally coined by 
chemist F.F. Runge from the German word 
“kaffee” which directly translates to coffee 
(Tilling, 2001). This particular chemical is 
deteriorating as the degree of roasting is increased 
(Lokker, 2017), thus making it a good indicator of 
coffee quality. Caffeine content on the cv. Liberica 
has lower values compared to the cv. Arabica and 
cv. Canephora (Ling et al., 2000, Anthony et al. 
1993, as cited by Amidou et al. 2007).  
 
In the context of quality assurance of roasted 
coffee, near-infrared spectroscopy (NIRS) is a fast, 
simple and cheap non-destructive method that 
serves as an alternative tool for qualitative and 
quantitative analysis in different types of food. 
NIRS has been used to determine caffeine content 
and roasting color (Pizarro et al. 2007, Zhang et al, 
2013, Ayu, Budiastra, & Rindang, 2020), sucrose 
(Santos et al, 2016), pH, and acidity (Araújo et al., 
2020), trigonelline and chlorogenic acid (CGA) 
(Budiastra, 2020), blend ratio (Bertone et al., 
2015) for both cv. Arabica and cv. Canephora 
samples. In-line monitoring of the roasting process 
has also been done with the use of this technique 
(Catelani, 2018). NIRS, paired with UV-VIS, was 
also used to discriminate green coffee bean species 
according to their caffeine content and amount of 
CGA (Adnan et al., 2020). Characterization of 
green coffee beans (GCB), whole roasted coffee 
bean, and ground coffee bean was also carried out 
using NIRS for real-time assessment of coffee 
matrices (Tugnolo et al., 2019).  
 
Partial least squares (PLS) and variable selection 
and MLR can be used to relate matrix X to a 
vector y or a matrix Y. It is referred to as the 
projection of latent structures through pmLartial 
least squares. The statistical procedure is 
insensitive to collinear variables and can accept a 
large number of variables, such as NIR spectra. 

The resulting regression model predicts a property 
y from the original dependent variables (Bokobza, 
1998 and Varmuza & Filzmoser, 2009).   
    

MATERIALS AND METHODS 
 
Coffee Processing and Sampling 
 
Fresh coffee berries belonging to the cv. Liberica 
were purchased from two farms located in the 
mountainous lands bordering Tagaytay and 
Laguna. The first farm (Farm A) was located in 
Barangay Mabato, Calamba City, Laguna, and the 
second farm (Farm B) was located in Sitio 
Balagbag-Araw, Barangay Canlubang, Calamba 
City, Laguna. The wet processing method as 
suggested by Clarke & Macrae (1987) was 
employed to obtain the GCB starting with soaking 
the berries in water for 24 hours. The floaters were 
removed after this procedure. The electric coffee 
bean depulper machine (Model Number: VOS150, 
Zhengzhou VOS Machinery Equipment, 
Zhengzhou, China) was used to separate the pulp 
from the parchment. Then, the parchments were 
sun-dried from 7-10 days or until a maximum of 
11% moisture content is reached. The dried 
parchments were processed with a dry coffee 
hulling machine (Model number: LG- QLG, 
Zhengzhou Longer Machinery, Zhengzhou, China) 
to obtain the green beans inside. Defective and 
infested green beans were manually removed from 
the samples. It was estimated that only 10% of the 
initial fresh weight of the berries yielded the GCB. 
The green beans were stored in a mason jar until 
the roasting process. Each green bean sample set 
weighed 100 g and a total of 11 sample sets were 
prepared for each harvest date and each farm. Ten 
sample sets were roasted and the remaining ones 
were the raw sample set.  
 
Coffee Roasting 
 
Results of the roasting profiling showed that slow 
and fast roasting can be achieved using 
temperatures 200 °C and 220 °C respectively. The 
roasting times used were 4, 7, 10, 13, and 16 mins 
for the fast roasting and 6, 12, 18, 24, and 30 mins 
for the slow roasting. Coffee roasting profiling was 
done by having a spoonful of the sample taken 
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every minute from the roasting chamber until the 
coffee beans were darkly roasted to nearly burnt. 
Agtron Gourmet Color Scale by SCAA (Specialty 
Coffee Association of America) was used to 
identify the degree of roasting from each of the 
samples with the help of a coffee roasting expert, 
Mr. Ronald Peña. The time and pre-set temperature 
at which the beans achieve Light, Medium, Medium
-Dark, and Dark Roast were recorded and were 
used for the actual roasting operations. One hundred 
twenty grams (120 g) of GCB were weighed, 100 g 
of it were loaded into the coffee roaster once the 
temperature reading hit its set roasting temperature. 
The remaining 20 g, which was contained in a 
ziplock bag and stored in an empty mason jar, was 
used later for determining the initial GCB moisture 
content before roasting. The temperature of roasting 
was recorded every minute until the end of the 
roasting period. To facilitate smaller deviations in 
the set temperature, the air intake was changed 
accordingly. As observed, restricting air intake 
allowed a faster rise in drum temperature while 
opening the air intake allowed a faster falling rate. 
The roasted coffee was transferred immediately into 
a mason jar and was immediately put into an ice 
bath to halt the roasting and bring the internal 
temperature of the bean to room temperature. Once 
the bean temperature stabilized, the mason jar was 
wiped dry and stored in a styrofoam icebox to 
maintain a constant ambient temperature. This was 
repeated twice and the roasted coffee for the two 
trials was combined in a single mason jar. Roasting 
schedules were staggered every week to prevent 
long periods of storage before testing that may 
affect the parameter readings, such as the moisture 
content. 
 
Moisture Content Determination 
 
The moisture content determination was based on 
the routine method as provided by AOAC 
979.11.1.2. Five grams (5 g) of ground coffee 
sample were weighed and was dried in a PEAK 
Carbolite natural convection oven (Derbyshire, 

United Kingdom) was set at 100 ± 2 °C for 5 to 6 
hours. It was cooled down in a desiccator before 
weighing. It was dried again for 30 mins and again 
cooled in a desiccator. The process of heating and 
cooling was repeated until the difference in two 

successive weighings was less than 1 mg. The 
lowest reading was the final dry weight. The 
moisture content determination was carried out in 
triplicates. 

 
Caffeine Content Determination 
 
The reference method for caffeine content 
determination was adopted from the standards for 
reporting the determination of caffeine content 
using high-performance liquid chromatography by 
the  Bureau of Indian Standards (BIS, 2012) and by 
the International Organization for Standardization 
(ISO, 2008). Half a gram (0.5 g) of ground coffee 
and 2.5 g of magnesium oxide (MgO, light grade) 
were weighed and placed in a 50 mL Erlenmeyer 
flask. The powder mixture was dissolved by adding 
at least 25 mL of distilled water and was stirred for 
30 s. The solution was left to boil in a water bath 
mixture maintained at 90 ℃ with occasional stirring 
for 20 mins. The solution was immediately filtered 
using a gravity filtration setup with a Whatman 
paper filter #1. Additional hot distilled water (~80 
℃) was used to completely wash the remaining 
solids from the Erlenmeyer flask. The filtrate was 
transferred in a 50 mL volumetric flask and was 
filled with hot distilled water to the mark. The 
filtrate was allowed to cool down to room 
temperature. Three milliliters (3 mL) of the filtrate 
was filtered again with a syringe filter with 0.45 µm 
pores and was transferred in a vial before HPLC 
injection. The secondary filtration was done to 
ensure there were no solid particles in the liquid 
that might cause the HPLC column to clog. The 
sample preparation for the caffeine extract was 
done in duplicates. The caffeine extraction process 
was summarized in Figure 1. 
 
Samples were analyzed using a Shimadzu 
Prominence UFLC system with a DAD detector. 
The separation was done using a Hypersil gold 
reverse phase C18 column. A 60% volume fraction 
methanol in water solution was used in the mobile 
phase with a flow rate of 1mL/min. Before testing, 
the mobile phase and corresponding pressure were 
allowed to stabilize. The UV detector was set to 273 
nm, which was found to be the highest peak of the 
standard caffeine solution. A glass microliter 
syringe was used to inject 10 µL of the standard 
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solution. Each run lasted 15 mins, with the caffeine 
peak starting around 6.8 mins and the highest peak 
appearing at 7.2 mins. After the injection of all the 
concentrations of the standard solution, it was 
followed by an equal volume of the sample solution. 
Each replicate of the sample solution was injected 
thrice, with a total of 6 injections for each sample. In 
between injections, a glass microliter syringe was 
washed with 60% methanol and distilled water to 
ensure there were no residues left in the needle and 
inside of the barrel. A clean run was also made by 
running the HPLC without injecting any solution to 
allow the mobile phase to remove any residues that 
may have been left in the column, which was also 
lasted 15mins. A clean run was made for every three 
runs of standard/sample solution. The area at the 
start to the end of the caffeine peak was used to 
calculate the caffeine content, given the Equation 1: 
 

    
            Equation 1 

where, 

   

%Caff is the caffeine content, in mg/mg %, per dry 
matter of coffee 

conccaff
  is the concentration, in mg/L, of caffeine in  

the coffee extract; 

A is the area, in arbitrary units, of the HPLC caffeine 
peak of the sample coffee extract solution; 

b is the y-intercept, in arbitrary units, of the standard 
curve generated from HPLC caffeine peak of the 
standard solution; 

m is the slope, in arbitrary units over concentration, 
of the standard curve generated from HPLC caffeine 
peak of the standard solution 

Vce is the volume, in L, of sample coffee extract; 

wrc is the mass, in mg, of ground roasted coffee 
beans; 

mcrc is the moisture content, in decimal dry basis, of 
the roasted coffee beans 

mcgcb is the moisture content, in decimal dry basis, 
of the GCB  

 
NIR Spectral Acquisition  
 
The NIR measurement setup was composed of the 
following: NIR Quest 512 version 1.7 spectrometer 
equipped with a Hamamatsu G9204-512 InGaAs 
linear array as a detector with an operating range of 
900-1700 nm, Tungsten Halogen HL-2000 light 
source, uninterrupted power supply (UPS), a 
spectral reflectance standard and a fiber optic 
reflectance probe. The NIR Quest 512 was 
connected to a laptop with SpectraSuite software 
installed. SpectraSuite® v.2.0 software was used to 
acquire reflection spectra. Before spectral collection, 
the following acquisition parameters were recorded 
from SpectraSuite® v.2.0: integration time (8ms), 
Boxcar width (30), and the number of scans-to-
average A reference spectrum was obtained by 
scanning a white standard while the dark spectrum 
was obtained by blocking the light path of the 
spectrometer. 
 
The Petri dishes containing ground coffee samples 
that were used previously in color determination 
were subjected to NIR scanning. The surface of the 
petri dish was divided into four quadrants, 

Figure 1. Caffeine extraction procedure 
 from ground coffee samples  
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representing four areas where spectral data was 
gathered using the spectrometer. The fiber optic 
probe was attached to an adaptor, with a 3mm 
clearance from the bottom surface, in a vertical 
alignment. The probe setup for the samples was 
visualized in Figure 2. 
 
 Statistical Analysis 
 
Two-way analysis of variance (ANOVA) and 
Tukey’s HSD test at a 5% level of significance 
was used to analyze the data to determine the 
significant differences in the moisture content and 
caffeine content across roasting times and roasting 
temperatures. For caffeine content, the values were 
also analyzed across roasting temperatures and 
farm sources. These statistical procedures were 
performed using IBM SPSS Statistics v.25.0 
(USA). 
 
NIR spectral data were analyzed using the 
chemometrics software, ParLeS version 3.1 which 
is capable of performing PLSR with leave-1-out 
cross-validation, PLSR modeling, and prediction 
(Viscarra-Rossel, 2008). Several pre-processing 
combinations were applied to NIR spectra and 
were evaluated using the PLSR Cross-Validation 
procedure. Two of the four statistical parameters 
that the PLSR Model function yielded were used 
to identify significant wavelengths relative to the 
selected parameters: regression coefficient (RC) 
and the variable importance of projection (VIP). A 
selection threshold of 0.7 was used on the 
normalized values of RC and VIP to narrow down 
the significant wavelengths impacting the PLSR 
model. The identified significant wavelengths 
were later used for multiple linear regression. 

 
Multiple linear regression was performed on the 
reflectance values of the selected wavelengths 
from the PLSR modeling and the reference values 
of the moisture content, and caffeine content. The 
stepwise linear regression method was applied to 
regress multiple wavelengths while simultaneously 
removing those that are identified as not 
significant. The probability of the F-statistic was 
used to evaluate whether a wavelength was 
removed (p>0.1) or entered (p<0.05) in the model 

(Van den Berg, 2017). Wavelengths/variables were 
also analyzed for redundancy and were removed 
automatically by the statistical software. The 
spectra were preprocessed with mean centering 
only for all the parameters. The predictive 
performance of the MLR models was evaluated 
using the same statistics from PLSR models: R2, 
R2

adj, RMSE, ME, SDE, and RPD. The procedure 
was performed using IBM SPSS Statistics v.25.0. 
The performance of the PLSR and MLR models 
were assessed with their resulting RPD and R2 
values as summarized by Williams (2001) in 
Tables 1 and 2. 
 

RESULTS AND DISCUSSION 
 
Coffee Roasting 
 
The drum temperature was recorded every minute 
during the whole duration of the roasting process 
as shown in Figure 3. Loading of the GCB was 
done once the set temperature was reached: 220℃ 
for fast roasting and 200℃ for slow roasting. A 
sudden drop in temperature reading was observed 
until the 2-minute mark, then it gradually rose 
again until it reached its respective set temperature 
in the 5-minute mark. From there, the temperature 
was seen fluctuating in a sinusoidal manner until 
the end of the roasting process. The first five 

Figure 2. Probe setup for spectral acquisition with 
respect to ground coffee samples. 
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minutes of the roasting were 
characterized by rapid loss of 
moisture in the form of steam 
exiting from the roasting 
chamber. This was the drying 
stage of roasting, where the 
surface temperature of the bean 
reaches 100℃, and surface 
moisture was easily removed 
(Yeretzian et al, 2002). The 
first crack was observed 
uniformly for all the roasting 
trials during the 4 to 5-minute 
mark, indicating that the 
volume expansion of the beans 
had started already. Moisture in 
the cells turns from liquid to 
vapor causing high-pressure 
buildup. This high pressure, in 
combination with the CO2 
production inside, causes 
swelling once it exceeds the 
mechanical resistance of the 
bean. This expansion produces 
the first cracking sound (Fadai 
et al., 2017). However, the 
second crack was not observed 
for the slow roasting process, 
despite the prolonged roasting 
time, unlike with the fast 
roasting which exhibited the 
second crack as early as its 10-
minute mark. Staub (1995), as 
mentioned by Songer (2012), 
indicated that the bean must 
reach an internal temperature of 
at least 230 ℃ for the second 
crack to occur, in which cell 
walls of the bean starts 
fracturing due to heating, hence 
the absence of the second crack 
in the slow roasting where the 
temperature is maintained only 
at 200℃. Kelly & Scott (2014) also attributed the 
second crack to gaseous build-up caused by 
pyrolytic reactions, a period when beans start to 
turn brown and sugar caramelization is occurring. 
 

Moisture Content 
 
The moisture content of roasted coffee beans 
across different roasting temperatures and times 
are summarized in Table 3. Though the exact 

Table 1. Guidelines for the interpretation of coefficients of determi-
nation by Williams (2001). 

R R2 INTERPRETATION 

± 0.5 <0.25 Not usable in calibration 

± 0.51 – 
0.70 

0.26 – 0.49 
Poor correlation, needs further research to 
identify cause 

± 0.71 – 
0.80 

0.50 – 0.64 Usable for rough screening 

± 0.81 – 
0.90 

0.66 – 0.81 
Suitable for screening and other               
approximate calibrations 

± 0.91 – 
0.95 

0.83 – 0.90 
Can be used with caution in most             
applications including research 

± 0.96 – 
0.98 

0.92 – 0.96 
Can be used in most applications, including 
quality assurance 

± 0.99 or 
higher 

Higher 
than 0.98 

Excellent, can be used in any application 

Figure 3. Mean drum temperature during slow and fast roasting. 

 

Table 2. Guidelines for interpreting RPD (Williams, 2001) 

RPD CLASSIFICATION APPLICATION 

0.0 – 2.3 Very poor Not recommended for 
use 

2.4 – 3.0 Poor Very rough screening 

3.1 – 4.9 Fair Screening 

5.0 – 6.4 Good Quality Control 

6.5 – 8.0 Very good Process control 

8.1 or higher Excellent Any application 
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temperature and time settings were set, there were 
still discrepancies in moisture content values for 
calibration and validation data sets. Environmental 
factors such as room temperature and relative 
humidity and the surface moisture content of the 
beans are some of the factors that could have 
caused the differences in moisture content values. 

Despite these discrepancies, both calibration and 
validation data sets showed an inverse correlation 
between roasting time and moisture content. 
 
The mean moisture content (± S.D) of the GCB 
before roasting was 10.1 ± 0.7% (n=33) for 
samples from Farm A and 9.4 ± 0.45% (n=33) for 

Figure 4. Time course of moisture content (a) and rate of evaporation (b)  according to roasting      
temperature. 

 

a b 

Table 3. Moisture content and caffeine content of roasted coffee beans across  
               different roasting temperatures and times. 

TEMPERA-
TURE, (℃)  

TIME 
(mins) 

MOISTURE CONTENT, 
(d.b. %) 

CAFFEINE CONTENT 
(g/g %) 

calibration validation calibration validation 

25 0 9.00±0.15a
 10.36±0.05a

 0.79±0.05a
 0.82±0.02abc

 

200 

6 3.85±0.14b
 2.68±0.04c

 0.89±0.12bcd
 0.84±0.02bc

 

12 2.01±0.56c
 1.10±0.05e

 0.87±0.07bc
 0.87±0.02bcde

 

18 1.88±0.45c
 0.84±0.04fg

 0.81±0.11a
 0.75±0.01a

 

24 1.63±0.23d
 0.70±0.04hg

 0.85±0.09ab
 0.89±0.02cde

 

30 1.06±0.60e
 0.38±0.05i

 0.83±0.09ab
 0.89±0.02cde

 

220 

4 5.87±0.15f
 4.18±0.04b

 0.92±0.06cde
 0.93±0.02e

 

7 2.31±0.22g
 1.43±0.04d

 0.84±0.10ab
 0.84±0.01bc

 

10 1.53±0.57d
 0.95±0.05ef

 0.95±0.08e
 0.86±0.02bcd

 

13 1.10±0.42e
 0.86±0.04fg

 0.94±0.07de
 0.82±0.02ab

 

16 0.97±0.32e
 0.56±0.05hi

 0.95±0.05e
 0.93±0.02de

 

* Values in the same column followed by different letters (a–i) differ significantly at p < 0.05 level. 
* Values represent the mean ± SD 
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Farm B. The drying rate for the fast and slow-
roasted coffees was almost equal during the drying 
stage as shown in Figure 4. Moisture loss 
decreased for the slow roasting, taking 30 minutes 
to reach 1.05% unlike for fast roasting that 
measured 0.96% moisture content after only 16 
minutes. Evaporation of moisture is dependent on 
temperature; hence these results are also expected 
to follow this principle. The peak rate of 
evaporation was also higher for fast roasting 
compared to slow roasting.  
 

Caffeine Content 
 
Caffeine content determination was obtained using 
high-performance liquid chromatography (HPLC). 
Every time coffee sample extracts were tested, 
standard solutions at varying concentrations were 
injected in the HPLC to obtain a standard curve 
(Figure 5). These were used to interpolate the 
caffeine concentration of the coffee sample extract. 
The coefficient of determination for the standard 
curve generated was 0.9919, indicating a very high 
linear correlation between the area under the curve 
and the caffeine concentration. 

Figure 5. The standard curve generated using mean areas under the curve of the 
HPLC curve at 273nm and caffeine concentration. 

 

Figure 6. HPLC chromatogram for caffeine analysis of coffee extract samples. 
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The mean values for caffeine content across the 
calibration and validation data sets were also 
shown in Table 3. Caffeine content is also not 
consistent despite the same time and temperature 
for the two data sets. But unlike moisture content, 
caffeine content showed no pattern or correlation 
as roasting time is increased for both calibration 
and validation data sets.  
 
The retention time of caffeine can be seen at the 
peak of the chromatogram which is 7.23 mins as 
illustrated in Figure 6. The area under the largest 
peak was used to calculate the caffeine 
concentration in Equation 1. The other small peaks 
adjacent to the caffeine are other coffee 
compounds that are also visible at 273 nm. 

The summary of the caffeine content of coffee 
across different times, temperatures, and farm 
sources is shown in Figure 7. For both slow and 
fast roasting (Figure 7a), there was no clear 
indication of the correlation between the time and 
the caffeine content. However, when the means 
were grouped according to roasting temperature 
and farm source (Figure 7b), it was clear that the 
coffee coming from Farm A has a significantly 
higher caffeine content compared to Farm B with 
Sig < 0.05 for both Farm-Treatment and Farm-
Temperature interactions. Fast-roasted coffee also 
obtained higher caffeine content compared to slow
-roasted coffee with Sig < 0.05 for Farm-
Temperature interaction. The caffeine content in 
GCB is affected by several factors such as genetic 

 

Figure 7. The caffeine content of coffee sample extracts relative to  
(a) time, and (b) temperature. 

a b 

Table 4. Prediction statistics of the PLSR cross-validation models for moisture content and caffeine con-
tent of the roasted coffee beans. 

PARAME-
TER 

PRE-
PROCESSING 

 CALIBRATION VALIDATION 

No. of 
PLSR  R

2
 

RMSEC
V 

RPD R
2
 RMSEP RPD 

Factors 

Moisture 
Content 

MC-MSC-MF-
1D 

9 0.970 0.0034 5.82 0.853 0.010 2.53 

MC-MSC-1D 9 0.968 0.0035 5.60 0.815 0.012 2.104 

MC-MSC 8 0.937 0.0049 4.00 0.837 0.012 2.090 

Caffeine 
Content 

MC-WD-MF-
1D 

17 0.755 0.0004 2.00 0.136 0.003 0.22 

MC-WD-1D 19 0.741 0.0004 1.95 0.160 0.001 0.556 

MC-WD 19 0.732 0.0004 1.92 0.153 0.001 1.042 
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diversity (Dessalegn, et 
al., 2008), geographical 
topology and climate 
(including rainfall, 
irrigation, and 
temperature) (Hameed, 
et al., 2018), and even 
agricultural practices. 
Coffees from Farm A 
and Farm B are 
classified as cv. Liberica 
varieties, but 
compounds such as 
caffeine can still vary 
widely due to the 
mentioned differences. 
Similar results were 
reported by (Lang, et al., 
2013) as they have 
found that caffeine 
content was found to be 
significantly larger for 
coffee roasted at higher 
temperatures. The 
variability of caffeine 
content in the roasted 
coffee was also 
observed by having a 
large standard deviation 

Figure 9. PLSR cross-validation model for (a) moisture content and 
 (b) caffeine content using calibration data. 

 

Figure 8. NIR spectra of ground roasted coffee beans from the calibration   
data set at 95% confidence interval from (a) Farm A – slow roasting (b) 

Farm B – slow roasting (c) Farm A – fast roasting; and  
(d) Farm B – fast roasting. 
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as the values converge in a range of 0.65 to 1.00 g/
g % only.  
 
Near-Infrared Spectra Analysis 
 
NIR raw spectra of the ground roasted coffee 
beans from the calibration data set at 95% 
confidence interval are plotted in Figure 8. Each 
spectrum had its size reduced to half by increasing 
the wavelength increment to 3.3 nm and by 
rounding off the wavelength values to the nearest 
integer. The reflectance spectra were plotted from 
950nm up to 1648nm. The spectra were grouped 
according to farm source and roasting temperature 
to identify if there were any notable differences 
when it comes to their recorded peaks and troughs. 

 
Peak reflectance of the spectra was recorded at 
wavelength 1315-1322 nm (4.8a), 1312-1319 nm 
(4.8b), 1325-1332 nm (4.8c), and 1322-1328 nm 
(4.8d). Another notable depression in the spectra 
occurred at 1453-1460 nm [(4.8a) and (4.8c-d)] 
and 1450-1457 nm (4.8b).  A smaller depression 
was also observed from 1199-1206 nm (4.8a-d). 
Based on these similarities, the NIR spectra for 
coffees sourced from both farms and roasted at 
different temperatures were almost the same, only 
the reflectance values were varied.  

Reflectance at 1300-1350 nm is mainly attributed 
to the 1st overtone combinations of C‒H stretch of 
methyl group, whereas 1450-1460 nm is for the 1st 
overtone of O–H and N–H of primary amides, 
1200-1210 nm 2nd overtone of C-H stretch of 
methylene group (Otto et al., 2008 and Workman 
& Weyer, 2008). 
 
Partial Least Squares Regression 
 
The prediction statistics of the PLSR cross-
validation models at different pre-processing 
combination was summarized in Table 4. The 
preprocessing combination used for moisture 
content was MC-MSC-MF-1D utilizing 9 PLSR 
factors, which also obtained the highest R2 and 
RPD for both calibration and validation samples. 
Based on the R2, the chosen model for calibration 
data can be used for most applications such as 
quality assurance (R2: 0.92-0.96) whereas for the 
validation data it can only be used for research 
applications (R2: 0.83-0.90). Despite high R2, the 
model has a relatively poorer RPD value, limiting 
its recommended usage to quality control 
(calibration) and very rough screening (validation). 
The caffeine content model used four 
preprocessing methods (MC-WD-MF-1D) with 17 
PLSR factors. The largest coefficients of 

Figure 10. The absolute value of the (a) normalized regression coefficients plot and (b) 
normalized variable importance in projection generated from the PLSR model of the pre-

processed spectral data and the moisture content.  
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determination obtained from the three 
preprocessing combinations were R2 = 0.755 
(calibration) and 0.22 (validation). This is mainly 
because of the wide variability of the caffeine 
content as discussed in the earlier section. The lack 
of correlation between roasting time and caffeine 
content has caused the failure of the model to 
produce robust predictive statistics. The low RPD 
values for both calibration and validation data 
indicate that the caffeine content model is not 
recommended for any use. The predicted values 
are plotted against the observed values of the 
PLSR cross-validation model for both (a) moisture 
content and (b) caffeine content in Figure 9. 
 
The normalized regression coefficient and variable 
importance of projection values of moisture 
content were plotted in Figure 10. For the 
normalized regression coefficient, there are only 3 
wavelengths exceeding 0.7: 1348nm (0.27), 
1351nm (0.25) and 1645nm (0.19). 1348-1351nm 
is attributed to the 1st overtone combination of C-H 
(CH3).  Davrieux et al. (2008) reported a PLS 
model to predict the moisture content of roasted 
coffee (cv. Arabica and cv. Canephora varieties). 
The reported wavelengths with large standard 
deviations of absorbance values are 1150nm and 

1340nm, which they attributed to the first H-OH 
overtone absorption band (Otto et al., 2008 and 
Workman & Weyer, 2008). They mentioned that 
the high standard deviation values are attributed to 
the wide variation in spectral fingerprint due to 
water. An MLR model obtained by Adnan et al. 
(2017) in a similar experiment on moisture content 
prediction for GCB (cv. Arabica and cv. 
Canephora varieties) used the following 
wavelengths based on their weighted regression 
coefficient values: 1155, 1212, 1340, 1409, 1724, 
1908, and 2249 nm. For the VIP of moisture 
content, the highest value was found at 1636 nm 

Figure 11. The absolute value of the (a) normalized regression coefficients plot and 
 (b) normalized variable importance in projection generated from the PLSR model of the       

preprocessed spectral data and the caffeine content. 

 

Figure 12.  Absorption regions of caffeine and   
water found in coffee. Adapted from Ribeiro et al. 

(2010). 
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with 1.03. Comparing to the 
previous parameters, the VIP 
value obtained for all 
wavelengths in moisture 
content was low. Nonetheless, 
sufficient information about the 
significant wavelengths was 
concluded since the VIP values 
were normalized. The selected 
wavelengths for moisture 
content based on VIP are as 
follows: 954-957, 1160, 1623-
1639nm. The intensity at 954-
957 nm was attributed to the 
2nd overtone of O-H (H2O, 
ROH, and ArOH), 1160nm to 
2nd overtone of C-H (CH3), and 
1623-1639 nm to the 1st 
overtone of C-H (ArCH and 
CH3) (Otto et al., 2008 and 
Workman & Weyer, 2008). In 
an experiment of moisture 
content prediction of peanuts, 
Kandala et al, (2008) used the 
following wavelengths in their 
MLR model: 1033, 1137, 1159, 
1358, and 1393 nm. These are 
under the majority of the 
wavelengths selected for 
moisture content based on both 
the RC and the VIP, except 
those below 1000 nm and 
above 1600 nm. The 
wavelength bands 1160 nm, 
1623-1639 nm, and 1645 nm 
are all located in NIR bands 
that do not correspond to water 
which contains O-H stretch and 
O-H bond vibrations (Luck, 
1974 as mentioned by Büning-
Pfaue, 2003). However, Reh et 
al. (2006) as mentioned by 
Adnan et al. (2017) have 
reported that coffee beans also 
lose 0.39% of their mass due to 
degradation reactions during 
the drying process; which is 
not accounted for as water. 
This means that the formula for 

 

Table 5. Selected significant wavelengths based on partial least square 
regression (PLSR) models and their chemical assignments. 

PARAMETER 
 WAVE-

LENGTH 
VIBRATION-

AL MODE 
CHARTS 

Moisture  
Content 

954-957 
2nd overtone of 
O-H 

H2O, ROH, 
ArOH 

1160 
2nd overtone of 
C-H 

CH3 

1348-1351 
1st overtone 
combination of 
C-H 

CH3 

1623-1639, 
1645 

1st overtone of 
C-H 

ArCH, CH3 

Caffeine  
Content 

1013 
2nd overtone of 
N-H 

RNH2 

1212 
2nd overtone of 
C-H 

CH, CH2 

1261-1264 
2nd overtone 
region 

n/a 

1299 
2nd overtone 
region 

n/a 

1319 
2nd overtone 
region 

n/a 

1335-1338 
1st overtone 
combination of 
C-H 

CH3 

1377-1380 
1st overtone 
combination of 
C-H 

CH3 

1457b 

1st overtone 
combination of 
C-H, 1st over-
tone of O-H 

CH, H2O, ROH, 
CONH2, 
COHNR, RNH2 

Table 6. Model summary for the multiple linear regression of        
moisture content and selected wavelengths (selection threshold = 0.5) 
from the NIR spectra of roasted coffee. 

MODEL 
WAVE-

LENGTHS, nm 
R R2 R2

adj 
STD. ERROR 

OF THE   
ESTIMATE 

0* 
1623, 954, 1160, 

1629 
0.902 0.814 0.810 0.00852 

1 1623 0.588 0.346 0.343 0.01586 

2 1623, 954 0.839 0.703 0.700 0.01070 

3 1623, 954, 963 0.922 0.850 0.848 0.00762 

4 954, 963 0.921 0.849 0.847 0.00765 

5 954, 963, 1354 0.923 0.851 0.849 0.00759 

*Model was based on significant wavelengths at 0.7 selection threshold 
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MC calculation does not exclusively pertain to 
moisture losses only, but also includes mass losses 
coming from other compounds. Thus, these 
wavelengths relating to vibrational modes of C-H 
can refer to the other compounds lost during the 
drying process. 
 
Figure 11 summarizes the regression coefficients 
and variable importance in projection and the 
wavelengths plot for caffeine content. The highest 
regression coefficient was found at 1380nm with a 
value of 0.08. There was a total of 12 wavelengths 
with normalized regression coefficients exceeding 
0.7: 1013, 1261-1264, 1299, 1319, 1335-1338, 
1377-1380, 1457, 1600, and 1639nm. Among 
these, only 1013 and 1261-1264 were not included 
in the caffeine region as reported by Ribeiro et al. 
(2010) in their schematic representation of the 
absorption regions of main components in coffee 
(Figure 12). 1013nm is attributed to the 2nd 
overtone region of N-H (RNH2) while 1261-
1264nm falls under the 2nd overtone region only 
(Otto et al., 2008 and Workman & Weyer, 2008). 
For the variable importance in projection, the only 
wavelength selected was 1212 nm with a VIP of 
0.04. Even lower than the VIPs obtained from the 
moisture content, the result is caused by the high 
variability of caffeine content observed from the 
roasted coffee across different time, temperature, 
farm source, and date of harvest. The intensity in 
1212 nm is attributed to the 2nd overtone of C-H 
(CH and CH2) (Otto et al., 2008 and Workman & 
Weyer, 2008). In a similar study conducted by 
Budiastra et al., (2018), they used the following 
wavelengths for the MLR model for caffeine 
prediction: 1128, 1298, 1672 nm plus several 
wavelengths which accommodate the scatter and 
intercorrelation effects between chemical 
compounds. The following wavelengths selected 
using the RC and VIP for caffeine content 
prediction were following the reported results of 
Budiastra et al., (2018): 1299nm and 1639nm. 
 
The selected wavelengths based on the RC and 
VIP from the PLSR models are summarized with 
their respective chemical assignments in Table 5. 
A selection threshold equal to 0.7 for both RC and 
VIP yielded 4 wavelengths/wavelength ranges for 

moisture content and 8 wavelengths/wavelength 
ranges for caffeine content. 
 
Multiple Linear Regression 
 
The summary of the performance of the MLR 
model for moisture content and selected 
wavelengths from the NIR spectra of the roasted 
coffee is shown in Table 6. Initially, 12 
wavelengths were identified as significant in the 
PLSR at the 0.7 selection threshold and were 
utilized for MLR regression and only 4 remained 
in the final model (Model 0: 1623, 954, 1160, and 
1629nm). Model 0 has the highest R2 of 0.814 and 
the smallest standard error of estimate of 0.0085. 
The total wavelengths used in the MLR model in 
Table 6 was 30 when the selection threshold was 
lowered to 0.5. Only 3 wavelengths were entered 
in the final model (Model 5) which had a higher R2 
(0.851) and lower standard error of estimate 
despite Model 0 using 4 wavelengths only. 
 
Table 7  summarizes the performance of the MLR 
model of caffeine content and the selected 
wavelengths from the NIR spectra of roasted 
coffee.  A total of 13 significant wavelengths was 
used in the MLR, 4 was entered in Model 6 and 
the rest were excluded as it was identified as 
insignificant. Model 6 obtained better performance 
in terms of R2 (0.445) in comparison to Model 6 
despite utilizing 1 less wavelength in the 
regression. To test if the model can be improved 
further, the selection threshold was lowered to 0.5 
to increase the number of significant wavelengths 
that can be used in regression and the model 
summary was shown in Table 4.11b. Out of the 
initial 35 wavelengths, only 8 wavelengths were 
entered in Model 8 and obtained an insignificant 
improvement in terms of R2 (0.471) and standard 
error of estimate (0.0062) in comparison to     
Model 0. 
 

The stepwise multiple linear regression generated 
predicted values of the parameters using 
reflectance values of the selected wavelengths and 
the reference parameters. The predicted values of 
the moisture content and caffeine content were 
used to calculate the prediction statistics shown in 
Table 8. The moisture content model with R2 = 
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0.851 and RPD = 2.6 was still acceptable but is 
only limited to research and rough screening 
applications. The caffeine content model had a 
poor performance with low R2 = 0.471 and RPD = 
1.378 despite having more wavelengths analyzed 
during regression. There was a poor correlation 
and the model needs more research to determine 
the cause, hence the model was not recommended 
for any use. The predicted values are plotted 
against the observed values of the MLR model for 
both (a) moisture content and (b) caffeine content 
in Figure 13. 
 
The selected wavelengths based on the included 
wavelengths as selected by stepwise MLR are 
summarized with their respective chemical 
assignments in Table 9. Both MLR models used a 
0.5 selection threshold and yielded 3 selected 
wavelengths for moisture content and 8 selected 
wavelengths for caffeine content. The 3 
wavelengths for moisture content was also a subset 
of the selected wavelengths using the PLSR 

model. For the caffeine content, only 1572nm, 
1639nm, and 1399nm are the only wavelengths 
that were not selected by the previous PLSR 
model.  
 

SUMMARY AND CONCLUSION 
 
Based on the R2 (0.970), the PLSR model for 
moisture content can be used for quality assurance 
purposes whereas the RPD = 2.53 suggests that the 
model is only limited for rough screening 
purposes. For the PLSR model for the caffeine 
content, R2 = 0.755 and indicates that it can only 
be used for screening and approximate calibrations 
but the RPD = 0.22 suggests that the model has no 
practical use yet and still needs further study to 
identify the cause. 
 
MLR models were also developed using the 
significant wavelengths identified in PLSR. 
However, the performance of the models was 
almost similar to the PLSR models. The moisture 

Table 7. Model summary for the multiple linear regression of caffeine content and selected wavelengths 
(selection threshold = 0.5) from the NIR spectra of roasted coffee. 

MO
DEL 

WAVELENGTHS, nm R R2 R2
adj 

STD. ERROR 
OF THE    
ESTIMATE 

0* 1418, 1409, 1389, 1386 0.667 0.445 0.429 0.00063 

1 1457 0.236 0.056 0.051 0.00082 

2 1457, 1572 0.454 0.206 0.199 0.00075 

3 1457, 1572, 1639 0.473 0.224 0.213 0.00074 

4 1457, 1572, 1639, 1215 0.602 0.363 0.351 0.00068 

5 1457, 1572, 1639, 1215, 1338 0.655 0.429 0.415 0.00064 

6 1457, 1572, 1639, 1215, 1338, 1013 0.665 0.443 0.427 0.00063 

7 1457, 1572, 1639, 1215, 1338, 1013, 1399 0.676 0.457 0.439 0.00063 

8 1457, 1572, 1639, 1215, 1338, 1013, 1399, 1377 0.686 0.471 0.450 0.00062 

*Model was based on significant wavelengths at 0.7 selection threshold 

Table 8. Regression statistics of the MLR model for moisture content, and caffeine content of the roasted 
coffee beans. 

PARAMETER 

PREDICTION STATISTICS 

No. of Wavelengths 
R2 Adj R2 RMSEP ME SDE RPD 

excluded included 

Moisture  
Content 27 3 0.851 0.849 0.008 0.000 0.008 2.600 

Caffeine  
Content 27 8 0.471 0.450 0.001 0.000 0.001 1.378 
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content model can be used for most applications 
including research based on the R2 value (0.851), 
while the RPD (2.6) limits its usage for rough 
screening purposes only. For the caffeine content 
model, an improvement to the RPD with 1.378 
was observed but is still not suggested for any 
practical use. 
 

The findings indicate the potential use of NIR for 
the quality assessment using the moisture content 
of roasted coffee. This can be used as a 
quantitative indicator of roasting degree aside from 
the color of the beans during roasting. However, 
for the caffeine content, none of the chemometric 
techniques used were proven to be effective for 
determining the quality nor the roasting degree of 

Figure 13. MLR model developed using calibration data for (a) moisture content and (b) caffeine 
content. 

 

Table 9. Selected significant wavelengths based on stepwise multiple linear regression (MLR) models and 
their chemical assignments. 

PARAME-
TER 

 WAVELENGTH VIBRATIONAL MODE CHARTS 

Moisture  
Content 

954 2nd overtone of O-H H2O, ROH, ArOH 

963 2nd overtone of O-H H2O, ROH, ArOH 

1354 1st overtone combination of C-H CH3 

CAFFEINE 
CONTENT 

1457 
1st overtone combination of C-H, 
1st overtone of O-H 

CH, H2O, ROH, CONH2, 
COHNR, RNH2 

1572 1st overtone region n/a 

1639 1st overtone of C-H ArCH, CH3 

1215 2nd overtone of C-H CH, CH2 

1338 1st overtone combination of C-H CH3 

1013 2nd overtone of N-H RNH2 

1399 1st overtone combination of C-H CH3, CH2, ArOH 

1377 1st overtone combination of C-H CH3 
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the roasted coffee beans. Roasting degrees as 
defined by the coffee industry are generally color-
dependent, and the color tends to change easily 
with roasting time. Unlike color and moisture 
content, caffeine content does not follow a specific 
trend when plotted against roasting time. The 
development of a NIR model capitalizes on trends 
on the reference values of parameters as observed 
with the color parameters and the moisture 
content.  
 

RECOMMENDATIONS 
 
The study focused on determining moisture 
content and caffeine content on varying roasting 
degrees of cv. Liberica coffee using NIR 
spectroscopy. The performance of the majority of 
the models was satisfactory, but there were still 
limitations that call for improvement and further 
research. The following are the recommendations 
for further studies: 
 
1. Increase of roasting temperature options to 

produce variation in roasting degree. Caffeine 
content was found to be dependent on the 
roasting temperature, hence this might lead to 
better-performing NIR models. This can also 
explain the conditions that can cause the 
maximum release of caffeine content in the 
coffee bean roasting. 

 
2. Add more varieties and farm sources in the 

data set to improve sample composition for 
NIR models. The study attempted to eliminate 
bias caused by the use of a single species by 
having 2 different farm sources and 2 different 
harvest dates for each farm. Instead, one of the 
parameters, caffeine content, was found to be 
farm source dependent. Adding more varieties 
would increase the range of applicability of the 
models especially for caffeine content. 

 
3. Obtain NIR data of roasted coffee samples that 

are being sold and used in the market with a 
clear identifier of roasting degree and variety 
to increase the robustness of the NIR caffeine 
model. This way, the information on how 
much caffeine content is present in a certain 

variety and roasting degree could add value to 
the coffee products. 
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